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1 Introduction

Galois theory is beautiful. It is also a vast and complicated subject (it requires
some getting used to). In this article I will give an introduction to this topic.
For those of you interested in a more in-depth covering of Galois Theory, I
recommend reading J. S. Milne’s “Fields and Galois Theory” (available online
at http://www.jmilne.org/math/) or Jacobson’s “Basic Algebra” (not available
online to my knowledge).

In order to keep this article short (it is after all only an introduction to the
topic!) and in order to give a slightly different presentation of the topic than
is customary in algebraic literature, I will develop the theory in reverse order,
compared to what is usually done in university courses. I will start with one
problem Galois theory helps us solve and build only the parts of the theory
which are needed to solve it.

I assume the reader is familiar with some basic notions of group theory and
ring theory.

2 The Problem

The problem we will solve in this article is that of proving the following state-
ment:

Every polynomial of degree n ≥ 5 with coefficients in Q (i.e. the field of
rational numbers) that is irreducible over Q and that has exactly n − 2 real
roots (so that it has exactly 2 complex roots) is such that all its roots cannot be
expressed by using rational operations (+ − ×÷) and rational exponentiations
(e.g.

√
2 or (−15)3/4).

The first question to answer is whether such polynomials exist (to show that
indeed this problem is of some interest). This is the topic of the next section.

3 An Example Polynomial

Choose k unique even integers n1, ..., nk. Define

g(x) = (x2 + 2)(x− n1)...(x− nk)
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Note that g(x) is of degree k+2 and has exactly k real roots (namely n1, ..., nk).
The problem is that g(x) is not irreducible. Now consider all the numbers x ∈ Q
such that g′(x) = 0 (where g′(x) is the derivative of g(x) - yes, derivatives are
also used in algebra!). As all the real roots (or equivalently the rational roots)
of g are simple (the ni’s are distinct) the derivative g′(x) of g(x) doesn’t vanish
at any of them. Thus |g(x)| > 0 for all x ∈ Q such that g′(x) = 0 (and there
are only finitely many such x’s). Denote

e = ming′(x)=0|g(x)|
Thus e > 0. Choose an odd n such that 2

n < e. Define

f(x) = g(x)− 2
n

It is obvious that f(x) has the same number of real roots, k, as g(x) (we merely
moved down the graph of g(x) by so little that the number of intersections with
the x-axis hasn’t changed). All that remains is to show that f(x) is irreducible
over Q. This is a direct result of Eisenstein’s Lemma below (after multiplying
f(x) by n).

Before proving it we will need one extra result, namely

Gauss’s Lemma 1. A polynomial with integer coefficients is reducible over
Z ⇐⇒ it is reducible over Q.

Proof. (⇐) is obvious. (⇒) is proved as follows. Suppose f(x) splits in Q. Then
f(x) = g(x)h(x) and there are integers m,n such that

m× n× f(x) = G(x)H(x)

such that G(x),H(x) have coefficients in Z. Now say a prime p divides m× n.
Then consider the equation modulo p:

0 = Ḡ(x)H̄(x)

Where Ḡ(x) and H̄(x) are G(x) and H(x) modulo p respectively. Now since p
is prime, a multiplication of two polynomials yielding zero means that one of
them is the zero polynomial (check the coefficients of the highest power of x).
WLOG suppose Ḡ(x) = 0. Then p|G(x). Divide both sides of the equation
above by p to get

m× n

p
f(x) =

G(x)
p

H(X)

Where both sides are still in Z[x]. We can continue in this fashion until the
constant multiplying f(x) is 1.

Eisenstein’s Criterion 1. Let

f(x) = anxn + ... + a1x + a0

in Z[x]. If an is not divisible by a prime p and ai is divisible by p for 0 ≤ i ≤ n−1
and a0 is not divisible by p2 then f is irreducible over Q.
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Proof. By Gauss’s Lemma it is enough to show that f(x) is irreducible in Z.
Suppose it is. Then we have

anxn + ... + a1x + a0 = (bmxm + ... + b0)(clx
l + ... + c0)

Now a0 = b0c0. And we know that p|a0 but p2 - a0. So p divides b0 or c0,
but not both. WLOG assume p|b0. Now a1 = b1c0 + b0c1. Now p|a0 and p|b0

but p - c0. Therefore p|b1. Continuing in this fashion we get p|bm, but then
p|an = bmcl. Contradiction.

This proves our claim that the example polynomial above is indeed irreducible
over Q (use Eisenstein’s Criterion with p = 2).

4 Field Extensions

Let E, F be fields such that F ⊆ E (e.g. Q ⊆ R). We say that E is a field
extension of F , or that F is a subfield of E. We denote a field extension E over
F as E

F .
Now suppose F is a field and f(x) ∈ F [x] is irreducible of degree n. Con-

sider the set E = (a1, ..., an), ai ∈ F of n-tuples of elements of F . Define two
operations on E, namely + and × as follows. If u, v ∈ E, u = (u1, ..., un), v =
(v1, ..., vn) then

u + v = (u1 + v1, ..., un + vn)
u× v = σ−1(σ(u)× σ(v))

Where σ : E → F [x]
(f(x)) is defined as σ(u1, ..., un) = u1 + ... + unxn−1 + (f(x)).

I will now show that the set E which we have constructed is in fact a field,
and using the natural isomorphism π : F → E, π(x) = (x, 0, ..., 0), we see that E
is a field extension of F . Note that disregarding the × operation E constitutes
an n-dimensional vector space over F .

It is clear that E is closed under the operations just defined.
We need to prove that for all 0 6= u ∈ E there is a v ∈ E such that

u × v = 1 (= (1, 0, ..., 0)). Consider the polynomial p(x) in F [x] of lowest
degree belonging to the equivalence class of σ(u). It is a nonzero polynomial
of degree at most n-1 in F [x]. Thus it is co-prime to f(x). Thus there are
polynomials s(x), t(x) ∈ F [x] such that s(x)p(x) + t(x)f(x) = 1 (using Euclid’s
gcd algorithm). Let v = σ−1(s). It is clear that v × u = 1 as required (if this is
not clear to you at this point try to prove it).

The other field axioms are proved similarly. Note that sometimes it is helpful
to think of E as a collection of polynomials (actually a set of equivalence classes
of polynomials) rather than as a collection of n-tuples (using σ to go back and
forth between the two). So the above also states that if f(x) is an irreducible
polynomial over a field F , then the ring F [x]

(f(x)) is in fact a field containing F (F
is identified with the set of constant polynomials).
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4.1 Example

Consider the field Z2 = 0, 1. Let f(x) = x2 + x + 1. As f(x) has no roots in Z2

it is irreducible. Consider the field E = Z2
2. Then for example, (0, 1)× (1, 1) =

σ−1((x + (x2 + x + 1))× (x + 1 + (x2 + x + 1))) = σ−1(x2 + x + (x2 + x + 1)) =
σ−1(1) = (1, 0) = 1.

5 Field Automorphisms

Let E be a field. An automorphism of E is an isomorphism of E onto itself.
For example consider the field C of complex numbers. Then the map η : C→ C
defined as η(a + bi) = a− bi, a, b ∈ R is an automorphism of C.

Let E
F be a field extension. An automorphism of E/F is an automorphism

of E that fixes every element of F . So the automorphism of C, η, defined above,
is also an automorphism of E

F .
Note that if E

F is a field extension then the set of automorphisms of E
F

constitutes a group. We call this group the Galois group of E
F and denote it

Gal(E
F ).

To be continued...

Stay tuned for part II!
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