
The Esoteric Programming Language at
the Heart of Modern AI

The Art of
Transformer
Programming
Human Powered
Optimization Procedures

PREPRINT

Yaniv Leviathan



ii



The Art of Transformer Programming

Yaniv Leviathan

Version 2022.10.24-2023.11.23



To my incredible wife and her unwavering support,
and to my amazing mom, who taught me everything that I know.

Yaniv Leviathan



iii

Science is what we understand well enough to explain to a com-
puter. Art is everything else we do.

Donald E. Knuth



iv



About This Work

What I cannot create, I do not
understand.

RICHARD FEYNMAN

‘‘How can modern large language models perform simple computations, like sorting a
list, searching for a sequence, or adding two numbers in decimal representation?”

Surprisingly, several years and thousands of papers since the Transformer was invented, it is
still hard to find a satisfying answer online to this seemingly simple question. Being a firm
believer in Richard’s Feynman’s words above, I decided to answer this question myself.

In fact, I decided to choose a set of simple programs, beyond those above, and implement all
of them by hand on top of a production grade decoder-only Transformer. These programs
included the canonical printing of the fixed string “Hello World!”, looking up values in a
fixed memorized lookup-table, searching for an input pattern in a given longer sequence,
sorting a list of numbers, and of course, decimal addition. Luckily, with some free holiday
time, a few days later I found myself with several Python colabs with implementations of
these programs. While my curiosity was appeased, with the hope that others might find the
work interesting I decided to dedicate some free weekend time since and compile the work
into a short booklet. This manuscript is the result.

I found this problem interesting for two reasons. First, creating these Transformer programs
by hand was an extremely fun set of puzzles. The intellectual challenge felt similar to trying
to program with an esoteric programming language, like Befunge, BCL, Brainfuck, Chef,
INTERCAL, Malbolge, Piet, and others. Programming a Transformer manually, like is done
in this work, is an esoteric programming language, made mostly of a particular set of linear
algebra operations. As a matter of fact, if you feel especially bored, Chapter 8 includes

v



vi

a simple interpreter for this esoteric language... but notice that most modern AI systems
are such interpreters themselves! Which brings me to the the second, and more important,
reason.

The second reason that this problem interested me is that this said esoteric programming
language also happens to power one of the most popular “computers” in the world - namely
the Transformer architecture behind modern AI systems. As of today, Transformers are
amongst the most important backbones of AI systems, and understanding better how
they work, and especially, what is hard for them, is key to improving them. In spite of a
tremendous amount of AI research since its invention, the Transformer architecture proved
to be extremely robust, with very few changes being adopted in practice. We’ll soon see
that while many of the design choices made by the Transformer creators make things harder
for our human brains, these don’t pose any issue to the optimization procedure and the
Transformer architecture. The most interesting cases though, are those that are hard for us
humans and are hard for the optimizer or the architecture, and understanding these better
might be key to creating better AI systems.

A Note About the Puzzles

A good puzzle, it’s a fair thing. Nobody
is lying. It’s very clear, and the
problem depends just on you.

ERNO RUBIK

Once I get on a puzzle, I can’t get off.

RICHARD FEYNMAN

I hope that reading this booklet can help others get a better grasp of how Transformers
work. That said, and to throw another quote into the mix (this time by Richard Branson):
“The best way of learning about anything is by doing”. To that end, I included a small set
of puzzles as exercises throughout the book, at the end of each of the chapters. To help
you orient yourself, and more easily decide which puzzles to attempt, I added some special
markings:

Hard All especially hard puzzles are marked with the black chess queen symbol (q). These
can usually take an hour or two and sometimes even more. If a puzzle is not super
hard, but does require writing a lot of code I used this symbol as well. Rarely, these
puzzles can be solved very quickly, but do require some “aha moment” or special



vii

insight.

Easy Those puzzles that are especially easy, I marked with the white pawn (P) symbol.
These should all take less than a minute or two to solve, and sometimes mere seconds.
Almost all of these can be solved “in your head”, and don’t even require a pen or
paper, and so there is no reason to skip them. If I used this mark for an exercise that
requires writing code, that means that either it’s extremely trivial code, or that you
should be able to imagine it mentally. These time estimates assume that you are fully
familiar with all of the terms and concepts in the puzzle - they might take much longer
if you are not.

Recommended Regardless of difficulty, the puzzles that are my very favorite and I recom-
mend the most are marked with the musical note symbol (�).

Unsolved by me There are very few puzzles that I have not yet solved myself. Those are
marked with my initial (Y ). If you managed to solve them - huge congrats! If your
solution also happens to be correct, I’d really love to hear about it!

Open-ended I usually much prefer rigorous puzzles, those that you can solve. I did include
some more open-ended puzzles, mostly to encourage generally thinking about a topic.
I did mark all of these with the open-ended symbol (‘…’), so you can skip them if you
prefer only the rigorous ones.

While there are some correlations between the symbols, I used the marks independently, so
some puzzles brand more than one.

Skippable Finally, one more symbol that applies to sections and not puzzles, is the skippable
symbol (�). I used it to denote sections from the main text that are completely optional
and may be safely skipped.

The following table summarizes the notations:

Symbol Meaning Symbol Meaning

q Extra hard. Y Not yet solved by me.
P Extra easy. ‘…’ Open ended.
� One of my favorites. � Safely skippable.

If there is interest, I might include my solutions to the puzzles within the book in a future
update.

In addition to the puzzles, if you have the time, I strongly recommend treating the main



viii

constructions in the book as puzzles as well - reading only the problem definitions at first
and trying to implement the Transformer programs yourself. It should not take more than
a few hours per program (and often, much less) and there is no better way to learn. If
you’d like to attempt this yourself, note that most of the programs can be implemented in
no more than 50 lines of readable code (most can be implemented in much less). I added
spoiler warnings after each of the formal problem definitions in each of the chapters, so that
you can read without risk of accidental spoilers even in case you’d like to attempt solving
everything yourself before reading. If you do decide to implement any of the programs in
this work, and your results are interesting (e.g. more efficient than mine), I’d really love to
hear about it.

More generally, I’d really love to hear of any comments or suggestions for improvement you
might have, and especially of any errors you find, so please reach out!

Note About the Code Snippets

Beware of bugs in the above code; I
have only proved it correct, not tried it.

DONALD E. KNUTH

Programs must be written for people to
read, and only incidentally for
machines to execute.

HAROLD ABELSON

Often reading a short piece of code is many folds easier to understand than reading an
equivalently lengthy math formula. With that in mind, code snippets are included throughout
this work. They aren’t very practical and you should feel free to treat them exactly as
“easier to understand formulas”. Specifically - this booklet can be read in bed!

That said, if you choose to dig deeper (and do the exercises) the code should all be
runnable. Note though, that the snippets are meant to be run in order, and might depend
on preceding snippets. You can find all code snippets in the book in colab form at:
https://yanivle.github.io/taotp.ipynb.

Thank you!

Yaniv Leviathan

https://yanivle.github.io/taotp.ipynb


ix

I have made this longer than usual
because I have not had time to make it
shorter.

BLAISE PASCAL



x



Introduction

Everybody should learn to program a
computer, because it teaches you how to
think.

STEVE JOBS

The Transformer [Vaswani et al., 2017] is a highly efficient differentiable computer. When
equipped with the right set of weights, obtained through a lengthy optimization process

on supercomputers processing massive amounts of data, Transformer models are able to
recall vast amounts of memorized knowledge and perform complex computations. Unlike
human-designed programs on traditional computers, the inner workings of such models after
training are not well understood. Many studies aim at analysing the programs obtained by
these optimisation processes, with some, albeit limited, success. In this work we ask, and
attempt to answer, a simpler question - how could a set of simple programs be efficiently
implemented on a Transformer computer?

An entire subfield of AI, namely Mechanistic Interpretability, is concerned with reverse
engineering neural programs obtained from optimization processes (most recently with
reverse engineering Transformer programs specifically) but surprisingly little effort (to my
knowledge!) is spent on actually programming these manually. Imagine an alternate universe,
where in 1940, aliens came to earth and supplied us with modern x86-based computers,
as well as a magical device that could produce working program binaries from simple
descriptions. Ask this magical device to produce a “photo editor” and the device would
output the binary for a Photoshop-like program, ask it for a “first person shooter” and get
the binary for Doom, etc. The device would also get as input the maximum desired size
of the binary - if you ask for a shooter with a binary consisting of only 1 KB, you’d get a
degenerate version of Doom (if the size you request is too small, you won’t get a working

xi



xii

program). In this alternate universe, you might expect that 1940s scientists would reverse
engineer and analyze the binaries outputted by this magic device, maybe trying to restrict
the size limit to make the generated programs simpler and analysis easier. This is analogous
to mechanistic interpretability. You might also expect that in this alternate reality some
scientists would try to learn x86 assembly code and actually manually write some programs,
without using the magic device. The analogy here, is this book.

The question of how a program could be implemented on a Transformer is indeed different
from asking how the program is implemented in a specific trained LLM. The latter might
be more important for many practical applications, but the former is hopefully much easier
to answer. For example, there are countless degrees of freedom provided by the Transformer
architecture, like rotating the activations basically anywhere, that enable trivial entanglement
of unrelated concepts (see Exercise 8 in Chapter 1). Making sense of how a specific trained
model performs a calculation might require understanding and disentangling many of these.
This distinction between the questions is somewhat similar to the distinction between asking
how a biological brain might be able to perform a computation efficiently, and asking how
our very specific human brains have happened to evolve to solve that calculation∗.

Putting aside the ability of a Transformer to be efficiently optimized, we instead focus just on
the Transformer as a programmable computer. It is known that variants of the Transformer
are Turing-complete, but a repository of efficient implementations of simple programs on
a Transformer computer is not widely available. Moreover, much of the implementations
that do exist use simplifications compared to common production settings (e.g. outputting
intermediate auxiliary tokens, using Transformer encoders, or ignoring components such
as layer normalizations), which make the problems substantially easier. In this work, we
will implement by hand a set of basic programs on a Transformer computer, i.e. we will
manually set the weights of a Transformer, without a training procedure or datasets. We’ll
use a non-simplified decoder-only stack, similar to that used by well known large language
models.

The programs we will implement include printing Hello World† (Chapter 2), looking
up values in a Lookup Table (Chapter 3), Searching for patterns (Chapter 4), finding
the Minimum and Maximum elements and Sorting a sequence of numbers (Chapter 5),
and Decimal Addition (Chapter 6). While we’ll tackle the programs mostly in increasing
order of difficulty, we’ll gradually develop a set of tools that we’ll reuse from program to
program. As we’ll see, a large part of these tools will aim to overcome the mechanisms
designed to aid the automatic optimization process. As a matter of fact, we’ll observe that

∗ I’m personally much more interested in the former.
† We will use Small Caps to denote the names of our programs.



xiii

some of our implementations are unlikely to be achieved by an optimisation process. We
will dedicate a significant part of the work to trying to make our programs efficient - i.e.
use few parameters, and we’ll then observe that with large enough Transformers, many of
the implementation intricacies disappear.

The structure of the work is as follows: in Chapter 1 we will examine the implementation
of the Transformer that we’ll use. Then Chapters 2 through 6 will detail the construction
of each of the programs we will implement. These can be partially read out of order, but
do note that most of the later constructions leverage blocks developed in earlier sections.
Finally, Chapters 7 and 8 are super optional, the former containing further thoughts about
the sinusoidal embeddings and the latter offering a (somewhat idiotic) textual interpreter
for Transformer programs.

A primary objective of this study is to increase the accessibility of the understanding of a
Transformer computer. With that in mind, we’ll prefer using simple Python code instead of
lengthy equations where appropriate, include the majority of the code inline, and note that it
can (and was) all run on a consumer grade laptop. We note that many of the constructions
include a lot of technicalities, and while we try to make things as clear and self contained as
possible, this book is not a good introduction to Transformers. Indeed, a solid understanding
of the Transformer and its sub-modules, notably attention, MLP, and layer normalization,
are recommended prerequisites for this text (resources such as [Alammar, 2018] might be
helpful).



xiv



Acknowledgements

It is one of the blessings of old friends
that you can afford to be stupid with
them.

RALPH WALDO EMERSON

I’d like to extend a huge thanks to Matan Kalman and Asaf Aharoni, for reviewing the
book and providing countless great thoughts, insightful suggestions, and encouragement.

Another special thanks goes to Danny Lumen and Dani Valevski for super helpful
comments. A big thanks also goes to everyone who supported this book and provided great
words of encouragement: Eyal Molad, Eyal Segalis, Yoav Tzur, Raya Leviathan,
Liron Raz, Shlomi Fruchter, Andrei Broder, Avinatan Hassidim, Michael Daniel
Birnberg, and Yossi Matias. Thanks all for the great feedback and support! Another
thank you goes to Andrej Karpathy, whose minGPT project‡ and series of YouTube
talks§ were an inspiration for this work, and can act as great background material. A
particularly special thanks goes to Donald E. Knuth, whose “The Art of Computer
Programming” series ([Knuth, 1997a], [Knuth, 1997b], [Knuth, 1998]) is not only amongst
my all time favorite set of books (the first three volumes of which I read back-to-back about
25 years ago!) but were the most direct inspiration for this booklet (including being its
namesake). Oh, and he also developed TEX, without which this book would not have been
possible. Big thanks to all the great minds whose inspiring quotes hopefully make this book
more fun to read. And finally, a big thanks, as always, goes to my family, that put up with
dad spending a few weekends writing this instead of doing shenanigans together.

‡ https://github.com/karpathy/minGPT
§ https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

xv

https://github.com/karpathy/minGPT
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ


xvi



Contents

I Preliminaries 1

1 The Transformer 3
1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Transformer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Transformer Programs 11

2 Hello World 13
2.1 A Simplified Implementation � . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 The Full Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 3D Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Lookup Table 25
3.1 Attention Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Attending to Relative Positions . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Bypassing Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Cleaning Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Simplified Construction for an Untied Transformer . . . . . . . . . . . . . . 32

3.5.1 Analysis � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Full Construction � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xvii



xviii CONTENTS

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.1 Some Silliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Search 43
4.1 Padding for Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Full Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Sort 51
5.1 Min and Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Back to Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Powerpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Decimal Addition 59
6.1 Attention Is Not All You Need . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Analog Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Universal Approximation With the MLP . . . . . . . . . . . . . . . . . . . . 64
6.4 Back to Single Digit Addition . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 MLP Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Full Construction for Single Digits Modular Addition . . . . . . . . . . . . . 67
6.7 Multi-Digit Modular Addition . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Full Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

III Further Topics 75

7 The OG Encodings 77
7.1 Rotation Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Back to the OG Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Distinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.2 Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Non Linearly Shiftable Encodings � . . . . . . . . . . . . . . . . . . . . . . . 88
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS xix

8 The TAOTP Interpreter � 93
8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xx CONTENTS



Part I

Preliminaries

1





Chapter 1

The Transformer

The question of whether a computer
can think is no more interesting than
the question of whether a submarine
can swim.

EDSGER W. DIJKSTRA

Computer science is no more about
computers than astronomy is about
telescopes.

EDSGER W. DIJKSTRA

1.1 Implementation

While the programs we’ll develop are toy examples, our goal is to better understand
real-world models. With that in mind, we’ll use a standard implementation of a

Transformer stack, following the original implementation from [Vaswani et al., 2017]. More
precisely, we’ll match our implementation of a standard Transformer during inference. As
we’ll see, it will often be easier to implement our programs on a Transformer encoder, but,
as following [Radford et al., 2018] most modern large language models are decoder-only

3



4 Transformer Programming

Transformers, we’ll use a decoder-only stack as well. Also common in modern large language
models, following [Xiong et al., 2020], we’ll use Pre-LN instead of Post-LN∗. We will not
use the sinusoidal encodings of the original Transfromer [Vaswani et al., 2017], and instead
treat the positional encodings as “learned” embeddings, i.e. we will set them by hand, and
count them towards our parameter counts (see Chapter 7). Finally, since dropout has no
effect during inference (except possibly multiplying the weights by a constant), we will
leave dropout out of our implementation entirely, without sacrificing the faithfulness of our
implementation to the standard model.

See the full implementation in plain Numpy of a Transformer decoder that we’ll use in
Figure 1.1.

Since it is sometimes done in Transformer implementations (it was in the original Transformer
paper), to potentially improve efficiency, and also just to increase the challenge, we will
often follow [Press and Wolf, 2017], and tie the weights of the token embedding and output
embedding matrices tok_emb and out_emb (in which case, we will only count one of them
towards our parameter counts). Do note though that the motivations there do not hold
for most of our programs (see Section 3.5). We leave those as separate arguments in our
implementation for the cases when we chose to untie them (e.g. Section 3.5).

1.1.1 Inputs and Outputs

As we’re using a decoder-only stack, the output of our programs will directly follow the input.
Specifically, we’ll refer to the contents of the block before we run our Transformer as the
input and to anything added to the block by running our Transformer as the output. We will
use greedy decoding for all of our programs, as implemented in Figure 1.2. Some programs
will run for a fixed number of steps and some will optionally halt upon encountering the
end of sequence (<eos>) token. Some programs will make use of a beginning of sequence
(<bos>) sentinel token.

In most of the programs there will be a natural tokenization, and we will not use any fancy
tokenizer. The main exception is the Hello World program (Chapter 2) where we will
consider a problem-specific tokenizer as well as a more general tokenizer.

1.2 Transformer Programming

Each of our Transformer programs will simply consist of an assignment of values to all
parameter arrays from Figure 1.1: tok_emb, pos_emb, and out_emb (as noted above we will
∗ We note that we have actually implemented all of the programs both with a Pre-LN and Post-LN

setting, and, interestingly, Pre-LN turned out easier almost across the board, even for a human.



Transformer Programming 5

1 import numpy as np
2

3 def norm(x, axis=-1, epsilon: float = 1e-10):
4 return x / (x.sum(axis=axis, keepdims=True) + epsilon)
5

6 def softmax(x, axis=-1):
7 return norm(np.exp(x - np.max(x, axis=axis, keepdims=True)), axis=axis)
8

9 def layer_norm(x, gamma = 1., beta = 0., axis = -1, epsilon = 1e-10):
10 return beta + gamma * (x - x.mean(axis=axis, keepdims=True)) / (
11 x.var(axis=axis, keepdims=True) ** 0.5 + epsilon)
12

13 def self_attn(x, Q, K, V, P, mask):
14 queries, keys, values = (np.einsum('nj,hjk->nhk', x, M) for M in (Q, K, V))
15 qk = np.einsum('nhk,mhk->nmh', queries, keys) / (Q.shape[-1] ** 0.5)
16 attn_weights = softmax(np.where(mask[..., None], qk, float('-inf')), axis=1)
17 x = np.einsum('nmh,mhk->nhk', attn_weights, values)
18 return np.einsum('nhk,hdk->nd', x, P)
19

20 def transformer_layer(x, Q, K, V, P, M1, b1, M2, b2, ln1, ln2, mask):
21 x = x + self_attn(layer_norm(x, **ln1), Q, K, V, P, mask)
22 return x + np.maximum(layer_norm(x, **ln2) @ M1 + b1, 0) @ M2 + b2
23

24 def transformer(tokens, tok_emb, pos_emb, out_emb, layers, lnf):
25 n, = tokens.shape
26 causal_mask = np.tril(np.ones((n, n)))
27 x = tok_emb[tokens] + pos_emb[np.arange(n)]
28 for layer in layers:
29 x = transformer_layer(x, **layer, mask=causal_mask)
30 return np.einsum('nd,vd->nv', layer_norm(x, **lnf), out_emb)

Figure 1.1: The Transformer decoder implementation that we will use throughout this work.
Remarkably, it comfortably fits in 30 lines of readable Numpy code.

1 def decode(tokens, params, max_steps=1000, eos=None):
2 for _ in range(max_steps):
3 next_tok = np.argmax(transformer(tokens, **params)[-1])
4 tokens = np.append(tokens, next_tok)
5 if next_tok == eos: break
6 return tokens

Figure 1.2: The naive implementation of greedy decoding that we’ll use.



6 Efficiency

1 def base_layer(n_heads, d_model, d_ff, d_head):
2 return {
3 'Q': np.zeros((n_heads, d_model, d_head)),
4 'K': np.zeros((n_heads, d_model, d_head)),
5 'V': np.zeros((n_heads, d_model, d_head)),
6 'P': np.zeros((n_heads, d_model, d_head)),
7 'M1': np.zeros((d_model, d_ff)),
8 'b1': np.zeros((d_ff,)),
9 'M2': np.zeros((d_ff, d_model)),

10 'b2': np.zeros((d_model,)),
11 'ln1': {'gamma': 1., 'beta': 0.},
12 'ln2': {'gamma': 1., 'beta': 0.},
13 }
14

15 def base_params(vocab_size, block_size, d_model):
16 return {
17 'tok_emb': np.zeros((vocab_size, d_model)),
18 'out_emb': np.zeros((vocab_size, d_model)),
19 'pos_emb': np.zeros((block_size, d_model)),
20 'layers': [],
21 'lnf': {'gamma': 1., 'beta': 0.},
22 }

Figure 1.3: Resetting the parameters of our Transformer. Note that due to the residual
connections, base_layer initializes a Transformer layer to perform the identity function.

usually set out_emb to a copy of tok_emb), as well as Q, K, V, P, M1, b1, M2, and b2, for each
of the layers. We include the gamma and beta parameters of all of the layer normalization
modules in the implementation for completeness, but we will always use the default values
of gamma = 1 and beta = 0. Figure 1.3 illustrates setting of all the parameters. Note
that we usually won’t follow the popular conventions of having dff = 4 · dmodel and
nheads · dhead = dmodel.

1.3 Efficiency

Make everything as simple as possible,
but not simpler.

ALBERT EINSTEIN

We will aim to create programs that are efficient. More formally, we’ll measure the efficiency
of our programs by the number of their parameters. As we will see, sometimes we will need



Exercises 7

1 from functools import partial
2

3 class HumanReadableDict(dict):
4 def __repr__(self) -> str:
5 return "{" + ", ".join(f"{k}: {v:,}" for k, v in self.items()) + "}"
6

7 def count_params(params, count=lambda x: x.size):
8 embs = ["tok_emb", "pos_emb"]
9 if not np.all(params["tok_emb"] == params["out_emb"]):

10 embs.append("out_emb")
11 emb_params = {emb: count(params[emb]) for emb in embs}
12 non_emb_params = 0
13 for layer in params["layers"]:
14 for param in layer.values():
15 if isinstance(param, np.ndarray):
16 non_emb_params += count(param)
17 return HumanReadableDict(
18 {"n_params": sum(emb_params.values()) + non_emb_params}
19 | emb_params
20 | {"non_emb": non_emb_params})
21

22 count_non0_params = partial(count_params, count=lambda x: (x != 0).sum())

Figure 1.4: Simple logic for counting the number of parameters and non-zero parameters of
our programs. If tok_emb and out_emb are tied, we only count them once.

to make use of higher dimensions, e.g. for interim calculations, while most of the parameters
will be zeroed, so as a secondary efficiency metric, we will also consider sparse efficiency, i.e.
we will count just the number of parameters that are non-zero. Figure 1.4 implements the
count_params and count_non0_params functions for that purpose.

1.4 Exercises

1.‘…’ How much shorter can you make the code from Figure 1.1? What if you completely
ignore considerations about the readability of the code?

2. Consider the following compact 2-line alternate implementation of the multi-headed self
attention function:



8 Exercises

def self_attn2(x, Q, K, V, P, m):
w = softmax(np.where(m[..., None], np.einsum('nj,ml,hjk,hlk->nmh', x, x, Q, K), -1e20)
return np.einsum('nmh,mj,hjk,hdk', w, axis=1), x, V, P)

What are the differences vs the implementation from Figure 1.1?
3. Can you spot the glaring inefficiency in our naive implementation of decode from Figure

1.2? Fix it. Hint: are some computations repeated when decoding more than one token?
4.P Re-implement the Transformer (Figure 1.1) using Numpy’s matrix multiplication operator

"@" instead of einsums wherever possible.
5. Re-implement the Transformer (Figure 1.1) in a different language, e.g. C. Try to make

it as short and as efficient as possible.
6.P Change the decode function to perform temperature sampling.
7.P Note that the decode function breaks if you attempt to decode too many tokens. Change

it slightly so that it uses a maximal sliding window of the last block_size tokens and
can be called to produce an arbitrary number of tokens.

8.P Mechanistic interpretability is hard. Write a function, scramble_transformer (see
signature below), that gets a set of Transformer weights (in the same way as the input
of the transformer function from Figure 1.1): tok_emb, pos_emb, out_emb, and lnf,
as well as an array of layers, each consisting of Q, K, V, P, M1, b1, M2, b2, ln1, and
ln2 for each of the layers, and an orthonormal matrix M , and returns a new set of
weights, new_tok_emb, new_pos_emb, new_out_emb, new_lnf and new_Q, . . . , new_ln2 for
each layer, such that (1) new_tok_emb[i] = M · tok_emb[i] for all i, and (2) the
Transformer performs exactly the same function as before. Which parameters need to
change? What happens if M is not orthonormal?

def scramble_transformer(tok_emb, pos_emb, out_emb, layers, lnf, M):
assert np.allclose(M @ M.T, np.eye(tok_emb.shape[1])) # M is orthonormal.
...
assert np.allclose(new_tok_emb, np.einsum('vd,dk->vk', tok_emb, M))
return new_tok_emb, new_pos_emb, new_out_emb, new_layers, new_lnf

9.‘…’ In this book we’ll tackle some basic algorithms, like printing a fixed message, looking up
memorized patterns, searching for patterns, sorting a list, and performing addition (you’ll
see the formal definitions of each of the problems at the beginning of their respective
chapters). For now, try to make some educated guesses: (1) How many layers will we



Exercises 9

be using on average? (2) How many model dimensions will we be using on average? (3)
How many parameters? (4) What fraction of those will turn out to be zeroed? (5) Which
modules (attention vs MLP) will we be using more often? Make a note of your guesses
and when you finish the book check how many you got right.

10.q�‘…’ Think about the Transformer architecture - what modifications would you try to imple-
ment to make it better? Answer this question once again after finishing this book.



10 Exercises



Part II

Transformer Programs

11





Chapter 2

Hello World

If you can write “Hello World” you can
change the world.

RAGHU VENKATESH

The first program we’ll implement, Hello World, gets no input after the <bos> token,
and simply outputs the fixed string “Hello World!”. Formally:

Input [<bos>].

Output: [H, e, l, l, o, , W, o, r, l, d, !, <eos>].

Exclamation-Triangle
Beware - spoilers ahead! If you’d like to implement Hello World yourself,
now would be a good time to do so. Read on for the solution.

Observe that the output of this simple program is a function of the absolute position alone.
We’ll soon observe that as such, it can be implemented with a 0-layer Transformer. Being
the very first program that we’ll tackle, and to more gently introduce us to Transformer
programming, we’ll start by implementing Hello World on a much simpler architecture,
the Simpleformer.

13



14 A Simplified Implementation �

1 def simpleformer(seq, pos_emb, out_emb):
2 x = pos_emb[np.arange(len(seq))]
3 return np.einsum('nd,vd->nv', x, out_emb)
4

5 def decode_simpleformer(tokens, pos_emb, out_emb, eos):
6 while True:
7 next_tok = np.argmax(simpleformer(tokens, pos_emb, out_emb)[-1])
8 tokens = np.append(tokens, next_tok)
9 if next_tok == eos: break

10 return tokens

Figure 2.1: The Simpleformer.

2.1 A Simplified Implementation �

The Simpleformer is identical to a 0-layer Transformer, with two additional simplifications:
(1) there are no layer normalizations, and (2) the inputs are just the position embeddings -
i.e., there are no input token embeddings. Figre 2.1 shows an implementation.

In other words, if we denote by oj the output embedding for the jth token, the output of the
Simpleformer for position pi is simply argmaxj(pi · oj). If we simply guarantee then that
oj · oj > oj · oi for all i, j, an implementation of Hello World on the Simpleformer would
simply consist of setting pi = oti+1 , where tj denotes the token at position j in the output
sequence. See Figure 2.2. At this point you might say that these positional embeddings are
not really encoding positions at all - they are encoding tokens. That’s a great observation,
but note that had we a trained a Transformer, with learned positional embeddings, the
exact same the thing would happen there as well.

What is the minimum number of dimensions needed for this guarantee? Obviously one
dimension is not enough. Indeed, with a single dimension we could only represent two
symbols - the largest positive and the smallest negative. What about two dimensions? Two
dimensions do work great in our degenerate Simpleformer. Indeed, we can for example
assign a unique 2D representation to each of the tokens of the string “Hello World!” and
the <bos> and <eos> tokens as points on the unit circle (Figure 2.3). With our embeddings
being points on the unit circle, taking the dot product between two of them amounts to
computing the cosine of the angle between the vectors, and thus the above guarantee of
oj · oj > oj · oi for i 6= j holds. The actual order of the symbols inside the unit circle, as well
as the distances between them don’t really matter for now, as long as they are far enough
from each other to avoid numeric precision issues, and we can assign the points arbitrarily



A Simplified Implementation � 15

yi

pos_emb[i]

@ out_emb.T

argmax

pos_emb[i] = 
out_emb[ti+1]

= ti+1

Figure 2.2: The Simpleformer architecture. The gray text denotes our trivial solution for
Hello World on the Simpleformer.

(in later sections, the order and exact distances will matter, see Section 3.2).

Putting this all together, you can find a simple construction for Hello World on the
Simpleformer, following this design and using 2 model dimensions, in Figure 2.4.

1 message = ["<bos>"] + list("Hello World!") + ["<eos>"]
2 tokenizer = {s: i for i, s in enumerate(set(message))}
3 detokenizer = {i: s for s, i in tokenizer.items()}
4 tokenize = lambda s: np.array([tokenizer[c] for c in s])
5 detokenize = lambda a: "".join([detokenizer[i] for i in a])
6

7 t = np.linspace(0, 6, len(tokenizer)) # 6 = 2 pi - epsilon.
8 out_emb = np.stack((np.cos(t), np.sin(t)), axis=1)
9 pos_emb = out_emb[tokenize(message[1:])]

10 output = detokenize(
11 decode_simpleformer(tokenize(["<bos>"]), pos_emb, out_emb, eos=tokenizer["<eos>"])[1:-1])
12

13 assert output == "Hello World!"

Figure 2.4: An implementation of Hello World on the Simpleformer.



16 The Full Construction

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

'H'

'l'

'!'
'o'

' '

'<eos>'

'<bos>'

'W'

'r'
'd'

'e'

Figure 2.3: Assigning each of the tokens a unique representation on the 2D unit circle.

2.2 The Full Construction

The greater the obstacle, the more glory
in overcoming it.

MOLIÈRE

We’ll now turn our attention back to the full Transformer, where we will need to overcome
the two “obstacles” above: layer normalizations and input token embedding. A 0-layer
Transformer, which can implement functions of the current token and position only, as
depicted in Figure 2.5 will work. Similarly to our construction on the Simpleformer, it will
suffice to somehow encode in each absolute position the next token to decode.

Overview

As per the figure, a 0-layer Transformer adds together tok_emb[ti] and pos_emb[i], passes
the result through the final layer_norm (as there are no layers!), and multiplies the nor-
malized result by out_emb (which equals tok_emb transposed in our case) to get the logits.
Finally, the greedy decoder applies argmax to the logits to get the output yi.

As in the construction for the Simpleformer, we’d like yi to equal the next token to decode ti+1,



The Full Construction 17

+

yi

layer_norm

pos_emb[i]tok_emb[ti]

@ tok_emb.T

argmax

≈ α pos_emb[i]
≈ tok_emb[ti+1]

= ti+1

Figure 2.5: The 0-layer Transformer we’ll use for the Hello World program. The part above
the dashed line is the decode function. The gray text shows the desired values.



18 3D Positional Encoding

i.e., we’d like argmax(logits) to equal ti+1. For that, the output of the final layer_norm
should be closer to tok_emb[ti+1] than to the embedding of any other token.

Ignoring the Input Tokens

If we were not tying together the input and output embedding (tok_emb and out_emb), we
could simply zero out the token embeddings, and then the position embeddings would directly
flow into the final layer normalization. For slightly increased challenge though, and to follow
[Press and Wolf, 2017], we will be tying the weights, so we can’t zero out tok_emb (otherwise
out_emb would be zeroed out too!). We’ll therefore first have to deal with the input token
embeddings “dirtying” our position embeddings. To nullify the effect of the addition of the
token embedding, we could simply set pos_emb[i] = tok_emb[ti+1] - tok_emb[ti]. An-
other option, would be to set pos_emb[i] = N · tok_emb[ti+1] for a very large N . We then
have, layer_norm(tok_emb[ti] + pos_emb[i]) ≈ layer_norm(pos_emb[i]). In our con-
struction for Hello World we will use the latter, with N = 1, 000, 000. See Section 3.4
for a deeper dive on this topic.

Dealing With Layer Normalization

To finish the construction, we need to make sure that the above holds even after layer normaliz-
ation. In fact, it’s as easy to guarantee something even stronger - that
layer_norm(pos_emb[i]) = pos_emb[i], i.e., that the position embeddings (and like-
wise the token embeddings, which are taken from the same set according to our construction
above) will remain fixed under layer normalization.

Unfortunately, if we used 2 dimensions like in the construction for the Simpleformer above,
the final layer_norm (the green box in Figure 2.5) would collapse all of our 2D encoding
(and actually all of R2!) into just two points∗, so our encoding won’t satisfy the desired
quality above (or most desired qualities for that matter - it will be a pretty boring encoding!).
See Figure 2.6. What is the minimum number of dimensions that are needed with a standard
Transformer with layer normalization? Luckily, as we’ll now observe, 3 dimensions are
enough with a simple construction in R3.

2.3 3D Positional Encoding

As noted above, layer normalization reduces the dimension of a space by 2, meaning that
it would collapse the entirety of the 2D unit circle (or actually the entirety of R2, Figure
2.6). Luckily, 3 dimensional positional encoding are enough to work. Which subspace of

∗ We’d also get some undefined behavior on the line y = x.



3D Positional Encoding 19

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00
1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Figure 2.6: Layer normalization collapses all of R2 into the points (1, -1) and (-1, 1), allowing
us to represent a maximum of 2 points in R2 and all of R3 into the

√
3 − circle in the plane

perpendicular to (1, 1, 1), enabling a rich representation there.



20 3D Positional Encoding

1.5 1.0 0.5 0.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.5
1.0
0.5

0.0
0.5
1.0
1.5

'H'
'l''!'

'o'

' '

'<eos>'

'<bos>'
'W'
'r'

'd'

'e'

Figure 2.7: Assigning each of the tokens a unique representation on the 2D
√

3-circle in R3

perpendicular to (1, 1, 1). See Section 2.3.

R3 should we use? To satisfy the first condition of layer normalization (of zero mean, i.e.,∑
i vi = 0) we’ll restrict ourselves to the 2D-plane in R3 that’s perpendicular to the vector

(1, 1, 1). To satisfy the second condition (of unit variance, i.e.,
∑

i v2
i = 3) we’ll restrict

ourselves to points of magnitude
√

3 in that plane. To summarize, all points on the circle
with radius

√
3 on that plane perpendicular to (1, 1, 1) are fixed under layer_norm. Finally,

to minimize numerical instability we’d like the points to be as far from each other as possible,
so we’ll make sure that our encodings are evenly spaced on the above circle (as we’ll later see
in Section 3.2 this will be important for another reason as well - linear shiftability). Figure
2.7 shows our construction of 3D positional encodings for the tokens in the string “Hello
World!” (and the <bos> and <eos> tokens as well).

At this point you might be asking why I chose to call this construction 3D positional
encodings - there is nothing very positional about them! Indeed, we are using them here
mostly for representing tokens, not positions. This name will hopefully make more sense in
Section 3.2, where we’ll observe that making sure that the points are arranged in order and
with fixed distances on the unit circle is a very helpful construction for positional encoding.
For now, just don’t dwell too much on the name.

For a simple code implementation of these 3D positional encoding, we’ll first use a para-



Putting It All Together 21

meterization p(t) : [0, 2π] → S1, that sends a point t ∈ [0, 2π] to (cos(t), sin(t)). We then
embed S1 ⊂ R2 in R3, and finally we send this unit circle to the rotated and scaled one
above using a linear transformation, so it’s enough to define it on the vectors of any basis
of R3. Specifically, we’ll construct a rotation that sends (0, 0, 1) to ( 1√

3 , 1√
3 , 1√

3 ), (1, 0, 0)
to an arbitrary point on the rotated unit circle ( 1√

2 , −1√
2 , 0), and finally sends (0, 1, 0) to an

orthogonal point on the rotated unit circle ( 1√
6 , 1√

6 , −2√
6 ). Scaling the resulting point by a

factor of
√

3 gets us the desired embedding. See Figure 2.8.

1 def pos_enc_3d(t):
2 x, y = np.cos(t) / (2 ** .5), np.sin(t) / (6 ** .5)
3 return np.array([x + y, -x + y, -2 * y]) * (3 ** .5)
4

5 def pos_enc_3d_array(n):
6 return np.stack([pos_enc_3d(2 * np.pi * t / n) for t in range(n)])

Figure 2.8: Our construction of 3D (linearly shiftable, see Section 3.2) positional encodings,
that are fixed under layer_norm.

2.4 Putting It All Together

Putting it all together, the final part of the construction of Hello World consists of
setting the position encoding such that each position will decode to the corresponding token.
Similarly to our construction of Hello World for the degenerate Simpleformer above,
we’ll set pos_emb[i]=tok_emb[ti+1]·N where ti is the ith token in the string to decode
(“Hello World!”) and N is a large number (we’ll use 1,000,000). Denoting Pi = pos_emb[i]
and Tt = tok_emb[t], we get:

xi = Tti
+ Pi = Tti

+ N · Tti+1 ≈ N · Tti+1

And that’s it - we have a standard Transformer that prints “Hello World!”! Figure 2.9 shows
the full Hello World Transformer in code.



22 Exercises

1 block_size = len(message) - 1
2 vocab_size = len(tokenizer)
3 params = base_params(vocab_size, block_size, d_model=3)
4 params['tok_emb'] = params['out_emb'] = pos_enc_3d_array(vocab_size)
5 params['pos_emb'] = params['out_emb'][tokenize(message)[1:]] * 1_000_000
6

7 output = detokenize(decode(tokenize(['<bos>']), params, eos=tokenizer['<eos>'])[1:-1])
8

9 assert output == 'Hello World!'

Figure 2.9: The Hello World Transformer.

Excluding the final layer_norm’s beta and gamma, and the output embedding (which are
here tied to the input embedding), our Transformer has 13 positions and 11 unique tokens,
leading to a total parameter count of (13 + 11) · 3 = 72. Note though, that this number
assumes a message-dependent tokenizer. If instead we used a generic ASCII tokenizer (and
e.g. ‘\0’ as both <bos> and <eos> tokens), we’d have (13 + 256) · 3 = 807 total parameters.
With this generic ASCII tokenizer, we could use the construction above to output any
fixed message, such that for messages where |message| � 256 we’d need ∼ 3 · |message|
parameters. See Exercise 2 for implementations that are more efficient in the sparse sense.

2.5 Exercises

1.P Write a simple program, on a standard 0-layer Transformer, using at most 3 ·vocab_size
parameters, that indefinitely repeats the last token from the input.

2.P Optimizing for sparse parameters. (1) Repeat Exercise 1 but use only vocab_size non-
zero parameters. (2) Construct the full Hello World program using only vocab_size+
block_size non-zero parameters. (3) How many total parameters, zero and non-zero,
did you need for these constructions?

3.� Actually train a Transformer, i.e. with a standard optimization procedure, to output
“Hello World!”. How small can you make it?

4.P� Modify the construction of Hello World from this chapter to instead output “Hel
Word!” (i.e. [H, e, l, , W, o, r, d, !]), but use a zeroed out pos_emb array. You
can untie tok_emb and out_emb.

5.q Repeat Exercise 4, i.e. use a zeroed out pos_emb array, but produce the original “Hello
World!” output (i.e. [H, e, l, l, o, , W, o, r, l, d, !]).

6.P Show that if our Transformer implementation used RMSNorm [Zhang and Sennrich, 2019],
instead of standard LayerNorm, it could be made more efficient - specifically we’d get



Exercises 23

back one free dimension. How many parameters would our construction need in that
case?

7. Implement Hello World using only integer parameters.
8. Implement Hello World using only positive parameters.



24 Exercises



Chapter 3

Lookup Table

Low-level programming is good for the
programmer’s soul.

JOHN CARMACK

Never memorize something that you
can look up.

ALBERT EINSTEIN

We’ll now implement a simple Lookup Table - i.e. we’ll make our Transformer
memorize a mapping between keys (fixed-length sequences of tokens) and values

(single tokens). To make things slightly more interesting, we’ll allow prefixing the input key
sequence to look up with an arbitrary string. This prepended prefix will be ignored, and
the look up will only consider the fixed-length suffix of the input. More precisely, given
n fixed key-value pairs, (k1, v1), . . . , (kn, vn), such that the keys ki are strings of length l

and the values are tokens ki ∈ Σl, vi ∈ Σ (Σ denotes our vocabulary), our goal for input
string x1, . . . , xt s.t. xt+1−l, . . . , xt = kj would be to output vj . I.e., if the last l tokens of
the input match key kj , we will output vj . We’ll leave as undefined behavior cases where
the last l tokens don’t match any sequence, or match more than one sequence.

25



26

For example, given the lookup table represented by the pairs ([1, 2, 3], 4) and ([4, 5,
6], 7):

Key Value

1, 2, 3 4
4, 5, 6 7

Lookup Table will behave as follows:

Input: [1, 2, 3, 4, 5, 6].

Output: 7.

The main construction in this chapter we will focus on an easier version of Lookup Table
where the keys and values are chosen at random. We’ll show that our simple construction
will work perfectly with high probability for random lookup tables, but it will not work for
all possible tables. Exercise 11 asks you to construct an adversarial example to our simple
construction, and in Exercise 12 you will develop a construction that works for all cases.

Exclamation-Triangle
Beware - spoilers ahead! If you’d like to implement Lookup Table yourself,
now would be a good time to do so. Read on for the solution.

Here’s a quick sketch of our construction, which we will make precise later: we will have the
last token read the preceding l − 1 tokens, generate and store a hash of them, such that
the hash will be unique for each entry in the table, and arrange the output embedding to
produce the desired value for each of the hashes.

We note that Lookup Table is unique amongst the programs in this work in that it is very
parametric. While the other programs also depend on some parameters, like the maximum
block size or the size of the vocabulary, these usually don’t alter our construction in a
substantial way, whereas Lookup Table completely changes given an external input -
namely the table to memorize. To that end, we’ll actually be solving a small optimization
problem in Section 3.6. Following this construction is completely optional, but note that in
Sections 3.1-3.4 we’ll describe four basic blocks that we will continue using throughout the
rest of this work. With that in mind, feel free to skip the end of this chapter, but make sure
you understand the ideas in Sections 3.1-3.4.



Attention Hardening 27

3.1 Attention Hardening

An extremely useful tool for us will be reading memory from previous tokens without noise.
Unfortunately, our Transformer employs standard soft attention:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

To read memory without noise, we’d like to simulate hard attention, i.e. replace the softmax
with regular max (and then we can drop the 1√

dk
factor as well):

HardAttention(Q, K, V ) = max(QKT )V

Due to the exponential in the softmax, hard attention is easily approximated by multiplying
Q (or equivalently K) by a large number N :

HardAttention(Q, K, V ) ≈ Attention(NQ, K, V ) = Attention(Q, NK, V )

We’ll often use N = 1, 000, 000.

3.2 Attending to Relative Positions

A Transformer decoder can only attend to the left. That means that whenever we need
to process several tokens, we’ll have to carry out the computation in the position of the
right most token being considered. Most of our programs, including Lookup Table will
be sending information from all tokens involved in the computation right-ward, by having
tokens on the right attend to one or more tokens to their left and copying some information.

Previously, when constructing Hello World, we used the position embedding to encode
tokens directly. Now, more generally, we’d like to use the position embedding for their
intended purpose, and e.g. be able to read information from a token that is some specific
number of positions to our left. We’ll now construct the mechanism for performing such an
attention operation.

Definition 3.1 (Linearly Shiftable Encoding). An encoding E : Zn → Rd, over a vocabulary
of size n, is linearly shiftable if for every δ ∈ Z there exists a linear transformation
Tδ : Rd → Rd such that for all integer j ∈ Zn where 0 ≤ j+δ < n we have Tδ(E(j)) = E(j+δ).
We’ll call Tδ the shifting transformation of E by δ.

I use the notation Zn to denote the ring of integers mod n, i.e. Z /nZ . In other words Zn is
a shorthand for the set {0, 1, . . . , n − 1}.



28 Attending to Relative Positions

1 def pos_3d_enc_rotation_matrix(theta):
2 T = np.empty((3, 3))
3 T[0] = pos_enc_3d(0)
4 T[1] = pos_enc_3d(1)
5 T[2] = pos_enc_3d(2)
6

7 S = np.empty((3, 3))
8 S[0] = pos_enc_3d(0 + theta)
9 S[1] = pos_enc_3d(1 + theta)

10 S[2] = pos_enc_3d(2 + theta)
11

12 return np.linalg.solve(T, S)

Figure 3.1: The shifting transformation Tδ where θ = 2πδ
n .

As pointed out by [Vaswani et al., 2017] the original Transformer’s sinusoidal embeddings are
linearly shiftable. See optional Chapter 7 for further thoughts on the original Transformer’s
embeddings.

We are actually interested in a slightly weaker version of linear shiftability:

Definition 3.2 (Weak Linearly Shiftable Encoding). An encoding E : Zn → Rd is weak
linearly shiftable if there exists a linear transformation M that projects E into a linearly
shiftable embedding.

Note that it is possible for an embedding to not be linearly shiftable, but be weak linearly
shiftable (e.g. any linearly shiftable encoding embedded in a higher dimensional space, with
the new dimensions set to some non linear function, like a counter).

For both linearly shiftable encoding (Definition 3.1) and weakly linearly shiftable encoding
(Definition 3.2) we’ll only be interested in non-degenerate encodings, i.e. where |E(Zn) = n|.

Given a weak linearly shiftable positional encoding, attending to a relative position is easy
- we simply set the key projection K = M (from Definition 3.2) and the query projection
Q = TδM , so we get (Kv, Qu) = (E(pv), E(pu + δ)), which, assuming the encoding is
normalized, attains its maximum value exactly when pv = pu + δ. To keep things simple,
we’ll often set M to be the natural projection into an axis-aligned subspace (i.e. we’ll simply
zero out some of the dimensions). With the attention hardening trick above and assuming
the encodings are normalized, in order to read from a relative position without noise, it is
then enough to ensure that the positional embeddings are pairwise independent.

While evenly spaced points on the 2D unit circle are linearly shiftable and with attention



Bypassing Layer Normalization 29

hardening would allow encoding very large blocks without floating point precision issues,
as discussed in Section 2.3, 2D encoding are not fixed under layer normalization. We note
though that if we make sure the 3D positional encoding we constructed in Section 2.3 are
evenly spaced, they are both linearly shiftable and fixed under layer normalization. That’s
the construction we will use. Specifically, given δ we set θ = 2πδ

n , and construct the shifting
transformation Tδ as in Figure 3.1.

3.3 Bypassing Layer Normalization

Recall that our Transformer implementation uses PreLN∗ (see Figure 3.2). As will soon
become evident, and extending the ideas from our construction for Hello World, we’d
like to construct our hidden representations such that layer normalization would leave them
unchanged. We’ll now develop several tools to that effect.

+

xl

xl+1

layer_norm

self_attn

+

layer_norm

MLP

Figure 3.2: An illustration of Transformer_layer using PreLN.

We observe that for a vector v ∈ Rd, if
∑

i vi = 0 and
∑

i v2
i = d then layer_norm(v) = v

as desired. Immediately follows that for vectors v ∈ Rd1 , u ∈ Rd2 , if layer_norm(v) = v

∗ Exercise 7 asks you to implement Lookup Table with PostLN.



30 Bypassing Layer Normalization

and layer_norm(u) = u, then layer_norm(concatenate(v, u)) = concatenate(v, u),
i.e. if we construct our representation as a concatenation of blocks that are left unchanged
by layer_norm, then the representation itself will be left unchanged by layer_norm.

Theorem 3.1. If v ∈ Rd1 , u ∈ Rd2 are fixed under layer normalization in Rd1 and Rd2

respectively, then concatenate(v, u) is fixed under layer normalization in Rd1+d2 .

We will then construct our hidden representation for Lookup Table following this schematic:

Positional embeddingToken embedding

To that end, we’ll make sure that pos_emb is fixed under layer normlization and properly
padded:

Positional embeddingZeros

And similarly for tok_emb:

ZerosToken embedding

Note that the above diagrams are for illustration purposes only, and specifically, the number
of dimensions that we’ll actually use in Lookup Table for the token embedding will depend
on the parameters of the table to memorize, as we’ll soon observe. Later, in Section 4.1, we’ll
construct a slightly more sophisticated construction that will allow for additional storage
space.



Cleaning Up 31

3.4 Cleaning Up

Always leave the campground cleaner
than you found it.

A BOY SCOUTS RULE

In most of our programs, including Lookup Table, we’d like to perform some calculation
and retain the result of that calculation for downstream processing. For example, for
Lookup Table we’d like to generate the signature of the preceding tokens to be fed to
the unembedding matrix. Unfortunately†, due to the residual connections, the result of the
calculations performed by our attention or MLP sub-layers will be added to the input of
the layer, instead of overriding it. We’ll explore two simple tricks to remedy the situation
(we’ve already mentioned those more briefly in Chapter 2).

The first method, proper cleanup, consists of using hardened attention and attend to ourselves
(K = I, Q = NI, see Section 3.1), and set the V and P matrices to copy and negate our
contents: V = I, P = −I. Note that if the head size dhead is smaller than dmodel, we might
need several heads to perform this cleanup. Also, note that if we’d only like to free up part
of the space of our hidden representation, we could obviously do that as well by only copying
the parts to be cleaned up. Due to downstream layer_norm, instead of actually erasing the
content to be deleted, we’d usually like to set it to layer normalization resistant padding, as
we will see in Section 4.1 (or, more commonly, override it with the result of our calculation).

One caveat of proper cleanup, is that, unless we are attending to ourselves anyway, we’d
need to “waste” an attention head on this clean up (potentially more than one, depending
on dmodel, dhead, and the size of the block to be cleaned). Fortunately, in most of our
programs we’ll be attending to ourselves anyway, so we could just add I and −I to V and P

for the appropriate head, and get proper cleanup “for free”. Also observe that even in case
where we lost position information (or didn’t start with them to begin with because they
are otherwise unnecessary) we can always attend to ourselves perfectly as above.

The second method, messy cleanup, is even simpler, and exploits downstream layer nor-
malization. It consists simply of multiplying the result of the calculation we’d like to
overwrite our representation with by a large constant. Specifically, denote the result
of the calculation by u and the original data by v. Assuming

∑
i u2

i �
∑

i v2
i , then

layer_norm(u + v) ≈ layer_norm(u). This is the approach we took when constructing
Hello World in Section 2.

† Well, it is only unfortunate for us. Generally the residual connection is a critical mechanism to help
the optimization procedure propagate gradients.



32 Simplified Construction for an Untied Transformer

3.5 Simplified Construction for an Untied Transformer

Before we describe the construction for a Transformer where the input and output embeddings
are tied (Section 3.6), let’s start with a simpler construction for a Transformer where the
output and input embeddings aren’t tied. For this simpler construction we will not care
much about efficiency (i.e. number of parameters).

The original Transformer implementation [Vaswani et al., 2017], follows [Press and Wolf, 2017]
and tie the input embedding and the pre-softmax output embedding. The motivation being,
quoting [Press and Wolf, 2017]:

“In both matrices, we expect rows that correspond to similar words to be
similar: for the input embedding, we would like the network to react similarly
to synonyms, while in the output embedding, we would like the scores of words
that are interchangeable to be similar.”

We note that for the randomized sequences of Lookup Table (as well as those of most
of the rest of the programs in this work), this motivation does not hold. For this easier
construction then, we will untie the weight matrices (i.e. we will not force out_emb to equal
tok_emb).

A first idea would be to initialize tok_emb randomly, and then, by attending to the left
(Section 3.2), copy the embeddings of the preceding tokens into a concatenated representation,
and setup the output embedding to map from the concatenated embeddings to the desired
output. For the copying to be possible, we’d need to allocate enough redundant storage in the
destination (right) token to contain the needed information content from the left tokens. For
example, if we need d dimensions of information per token from k tokens, we could allocate
(i.e. reserve in the hidden representation) k · d dimensions and copy the relevant data from
k tokens, concatenated one after the other. A second and less wasteful approach could be to
hash the information from the preceding tokens together into a more compact representation.
A simple hash of k vectors v1, . . . , vk ∈ Rd into a d dimensional representation, might consist
of using a set of matrices G1, . . . , Gk ∈ Rd×d, one per relative position, and define hash(
v1, . . . , vk ) =

∑
i Givi. For example, Gi could be random matrices Gi ∼ N(0, I) or random

orthogonal matrices.

With this idea in mind we’ll make use of a single layer Transformer for our simplified
construction. As a matter of fact, we’ll only be using the attention module from that layer,
and won’t be needing the MLP part at all (we’ll make sure it provides no contribution to
the residual). We will initialize the position embeddings to the standard ones we discussed
above and the token embeddings to normalized random points, both with proper padding as



Simplified Construction for an Untied Transformer 33

1 def build_untied_transformer(ks, vs, vocab_size, block_size, prefix_len, tok_dims):
2 d_head = tok_dims + 3
3 n_heads = prefix_len
4 d_model = d_head # We don't need the standard d_head * n_heads.
5

6 params = base_params(vocab_size, block_size, d_model)
7

8 params['pos_emb'] = np.pad(pos_enc_3d_array(block_size), ((0, 0), (tok_dims, 0)))
9 params['tok_emb'] = np.pad(

10 layer_norm(np.random.normal(0, 1, (vocab_size, tok_dims))), ((0, 0), (0, 3)))
11 hash_matrices = np.random.normal(0, 1e-1, (prefix_len, tok_dims, tok_dims))
12

13 layer0 = base_layer(n_heads, d_model, 0, d_head)
14 params['layers'].append(layer0)
15 for head in range(n_heads):
16 theta = -head * 2 * np.pi / block_size
17 layer0['Q'][head, -3:, -3:] = pos_3d_enc_rotation_matrix(theta) * 1e8
18 layer0['K'][head, -3:, -3:] = np.eye(3)
19 layer0['V'][head] = np.eye(d_model)
20 layer0['P'][head, :tok_dims, :tok_dims] = hash_matrices[head].T
21 layer0['P'][0] -= np.eye(d_model) # Clean up residual.
22

23 causal_mask = np.tril(np.ones((prefix_len, prefix_len)))
24 for k, v in zip(ks, vs):
25 x = params['tok_emb'][k] + params['pos_emb'][np.arange(len(k))]
26 params['out_emb'][v] += transformer_layer(x, **layer0, mask=causal_mask)[-1]
27

28 return params

Figure 3.3: The construction for Lookup Table in the simplified case of a Transformer
with untied input and output embeddings.

above. We will then construct the relative attending and hashing mechanism as described
above, and finally, we’ll accumulate in the output embedding for each symbol the sums of
the hashes of the keys leading to it. See Figure 3.3 for the construction in this simplified
case.



34 Simplified Construction for an Untied Transformer

3.5.1 Analysis �

There should be no such thing as boring
mathematics.

EDSGER W. DIJKSTRA

So, why does this even work at all?

Consider what happens if we initialize tok_emb with random points on the
√

d-sphere in
Rd, and pick Gi to be random orthogonal matrices. Then‡, set out_emb[i] = oi to be∑

j|vj=i hash(kj), where hash(kj) =
∑

p=1,...,l Gp · tok_emb(kj,p).

Take a specific entry in our lookup table, k, v. Say we have c entries in our lookup table with
value v (“collisions”). What’s the probability of correctly outputting v for input k? We’d
want (layer_norm(hash(k)), oi) > (layer_norm(hash(k)), oj) for all j 6= i. Now, notice
that in high enough dimensions, layer_norm(hash(v)) ≈ α · hash(v) for some α that only
depends on d not v (see Exercises 3 and 4), so we’d want (hash(k), oi) > (hash(k), oj) for
all j 6= i.

Now, making the great simplifying assumption that ki,j and ks,t are independent, as is the
case for random lookup tables (specifically where the keys are randomly chosen and the
vocabulary size is large), for j 6= i we have (hash(k), oj) distributed approximately like the
sum of c · l2 dot-products between two random vectors on the d dimensional sphere (hash(k)
is approximately the sum of l independent vectors on the sphere, and oj is approximately
the sum of c · l vectors on the sphere). The dot product between two random vectors on the
d − 1-dimensional sphere in Rd is in turn approximately distributed 2 · Beta( d−1

2 , d−1
2 ) − 1

with 0 mean and approximate variance of 1
d (Exercise 5). Assuming n is large and using the

central limit theorem, we finally get that the above sum is approximately distributed like
N(0, c·l2

d ). Approximating c ≈ n
|V | we get σ2 = n·l2

|V |·d .

Putting it all together, choosing d � n·l2

|V | , we should expect to get correct decoding.
Empirically, for 1,000 entries in the lookup table, each of length 5 with |V | = 1,000, we get
n·l2

|V | = 25 and with 100 dimensions, we get ≈ 100% correct.

In Exercise 6 you will improve the above by applying some more layer normalizations to the
hashes.

‡ Recall that kj and vj are the keys and values to memorize from our lookup table.



Full Construction � 35

3.6 Full Construction �

We’ll now describe the full construction for Lookup Table. As in the simplified case, here
too we’ll use a single-layer attention-only Transformer (i.e. we will turn the MLP off by
setting all of its weights to 0, as in base_layer in Figure 1.3, leaving only the residual
connection). Each token will consist of a unique identifier and the single attention-layer will
read and incorporate into the hidden representation for each token xi a hash of the preceding
l tokens of the input xi+1−l, . . . , xi. Specifically, the last input token xt will contain a unique
signature of the key to look up. We’ll construct this key in such a way that if the preceding l

elements equal kj for some j, its dot-product with the token embedding table at location vj ,
tok_emb[vj], will be maximal, ensuring that our output token will be vj , as required. To
construct the above signature, we’ll need to first read the memory of the preceding l tokens,
which we’ll do by attending to relative positions (Section 3.2). To read l tokens, we will use
l attention heads and a single layer. We could also use e.g. a single attention head and l

layers, or a more sophisticated combination, but our construction turns out most efficient.

How should we construct our token embeddings and hash matrices so that they are efficient
(i.e. use few parameters)? Observe that the answer depends on the entries in the (fixed)
lookup table. For example, consider the degenerate case where vi depends only on ki,j for

a fixed j for all is, then clearly we could set Gi =

0, i 6= j,

I, otherwise
§. In order to find the

optimal setup for our fixed lookup table then, we’ll run a small optimization process. Note
that we are not optimizing for the Transformer end to end, but just for the token embeddings
and hash matrices. Importantly, note that even for this simple problem, optimizing the
Transformer directly on a synthetic dataset is far from trivial - for example, we’d need to
append prefixes of varying lengths to each of our examples and fill them with random (or
even adverserial values - e.g. keys from other sequences), to ensure that our Transformer
isn’t exploiting some undesired phenomenon in the data (see Exercise 1). By optimizing just
the token embedding and hash matrices, we guarantee that the Transformer will perform as
desired. Let M ∈ Rp×d×o be the hash matrices, E ∈ Rn×p×d be the token embedding, k

and v denote the lookup table to represent, and y a onehot encoding of v. Then the loss
and its gradient can be calculated as per Figure 3.4.

We then optimize E and M , ensuring to layer-normalize E after every iteration, as in Figure
3.5. Finally, Figure 3.6 puts everything together.

§ Actually, in this case we could just use a single attention head!



36 Full Construction �

1 def logsumexp(x, axis=-1):
2 mx = x.max(axis=axis, keepdims=True)
3 return np.expand_dims(np.log(np.sum(np.exp(x - mx), axis=axis)), axis=axis) + mx
4

5 def loss_and_grad(E, M, k, v, y):
6 V, d = E.shape
7 x = E[k] # n, l, d
8 h = np.einsum('nld,ldo->no', x, M) # n, d
9 mean = h.sum(axis=1)[:, None] / (d + 3)

10 h0 = h - mean
11 var = ((h0 ** 2).sum(axis=1)[:, None] + 3 * mean ** 2) / (d + 3) # n, 1
12 std = var ** 0.5 + 1e-10 # n, 1
13 h01 = h0 / std # n, d
14 z = np.einsum('vd,nd->nv', E, h01) # n, V
15 s = softmax(z) # n, V
16 loss = (logsumexp(z) - z)[np.arange(len(z)), v].sum()
17

18 dz = s - y # n, V
19 dh01 = np.einsum('nv,vd->nd', dz, E) # n, d
20 dstd = np.einsum('nd,nd->n', dh01, h0)[:, None] / (-std ** 2) # n, 1
21 dvar = dstd / (2 * (std - 1e-10)) # n, 1
22 dh0 = dh01 / std + 2 * dvar * h0 / (d + 3) # n, d
23 dmean = dvar * 6 / (d + 3) * mean - dh0.sum(axis=1)[:, None]
24 dh = dh0 + dmean / (d + 3)
25 dM = np.einsum('no,nld->ldo', dh, x)
26 dx = np.einsum('no,ldo->nld', dh, M)
27 dE = np.einsum('nd,nv->vd', h01, dz)
28 np.add.at(dE, k, dx)
29

30 return loss, (dM, dE)

Figure 3.4: The loss and gradient calculation for Lookup Table.



Full Construction � 37

1 from tqdm import tqdm
2

3 onehot = lambda t, v: np.eye(v)[t]
4

5 def optimize(E, M, ks, vs, iters, lr=1e-3):
6 vocab_size = E.shape[0]
7 y = onehot(vs, vocab_size)
8 with tqdm(range(iters)) as pb:
9 for _ in pb:

10 E[:] = layer_norm(E)
11 loss, (dM, dE) = loss_and_grad(E, M, ks, vs, y)
12 E -= lr * dE
13 M -= lr * dM
14 pb.set_description(f'{loss=}')

Figure 3.5: Optimizing the token embedding and hash matrices for Lookup Table.

1 def build_lookup_transformer(ks, vs, vocab_size, block_size, tok_dims, optimization_iters):
2 n, prefix_len = ks.shape
3 d_head = tok_dims + 3
4 n_heads = prefix_len
5 d_model = d_head # We don't need the standard d_head * n_heads.
6

7 params = base_params(vocab_size, block_size, d_model)
8

9 params['pos_emb'] = np.pad(pos_enc_3d_array(block_size), ((0, 0), (tok_dims, 0)))
10

11 tok_emb = np.random.normal(0, 1e-1, (vocab_size, tok_dims))
12 hash_matrices = np.random.normal(0, 1e-1, (prefix_len, tok_dims, tok_dims))
13 optimize(tok_emb, hash_matrices, ks, vs, optimization_iters)
14 params['tok_emb'] = params['out_emb'] = np.pad(layer_norm(tok_emb), ((0, 0), (0, 3)))
15

16 layer0 = base_layer(n_heads, d_model, 0, d_head)
17 params['layers'].append(layer0)
18 for head in range(n_heads):
19 theta = -head * 2 * math.pi / block_size
20 layer0['Q'][head, -3:, -3:] = pos_3d_enc_rotation_matrix(theta) * 1e8
21 layer0['K'][head, -3:, -3:] = np.eye(3)
22 layer0['V'][head] = np.eye(d_model)
23 layer0['P'][head, :tok_dims, :tok_dims] = hash_matrices[-1 - head].T
24 layer0['P'][0] -= np.eye(d_model) # Clean up residual.
25

26 return params

Figure 3.6: Building the Lookup Table Transformer.



38 Evaluation

3.7 Evaluation

To test our construction, we generate a set of random lookup tables, build the Transformers
as above, and measure the decoding precision, see Figure 3.8. We see that we can represent
lookup tables with 10 entries with just 8 model dimensions for all tested vocabulary sizes
with 100% precision, 13 model dimensions for 100 entries, and 33 dimensions for 1,000
entries (except when the vocabulary size is extremely small and our procedure fails¶). In
terms of parameter counts, this translates to 1,408 params (283 non-zero params), 3,588
params (733 non-zero params), and 22,308 params (5,033 non-zero params) for perfectly
memorizing a lookup table with 10, 100, and 1,000 entries with vocab sizes between 10 and
1,000. Not bad!

3.7.1 Some Silliness

If people never did silly things, nothing
intelligent would ever get done.

LUDWIG WITTGENSTEIN

As noted above, representing our randomized lookup tables is a harder problem than
representing more regular lookup tables, like those emerging from English n-gram models.
Just for fun, let’s further test our construction by taking 1,000 non-overlapping 6-grams
from the text of Romeo and Juliet (which results in a vocabulary of size 1,540). As you can
see in Figure 3.7 the histogram is very sharp, as is typical for natural language. If we train
our Transformer on this text, we are able to perfectly decode these 1,000 6-grams with a
model of just 23K parameters.

Now for the silly part - what happens if we regard this lookup table as a “soft” n-gram table,
and decode new text from it? See Figure 3.9 for some results.

3.8 Exercises

1.q Implement Lookup Table by using a standard optimization procedure for the entire
Transformer - i.e. build an appropriate dataset and train a transformer to perform the
Lookup Table operation on it without any manual setting of weights. How would you
guarantee that there are no adversarial prefixes that would make your model fail?

2. Reimplement Lookup Table for the untied case (Figure 3.3) using simple concatenation
instead of hash matrices.

¶ I’m sure there is a simple explanation for not being able to memorize 1,000 with a vocab size of 10 with
more than ∼20% precision - but alas it is evading me right now. Please reach out if you know why!



Exercises 39

0 200 400 600 800 1000 1200 1400 1600

0

25

50

75

100

125

150

175

Figure 3.7: Words from “Romeo and Juliet” follow a sharp distribution.

6 7 8
dmodel

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Sequence Memorization Performance for 10 Sequences

|V| = 10
|V| = 100
|V| = 1000

6 7 8 13
dmodel

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Sequence Memorization Performance for 100 Sequences
|V| = 10
|V| = 100
|V| = 1000

6 7 8 13 23 33
dmodel

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Sequence Memorization Performance for 1000 Sequences
|V| = 10
|V| = 100
|V| = 1000

Figure 3.8: Decoding precision for various model sizes for lookup tables with 10, 100, and
1,000 entries. The shaded regions represent the minimum and maximum values for 10 runs.



40 Exercises

Figure 3.9: Examples of decoding from our lookup table Transformer. The non bolded text
is the input (i.e. the actual prefix from the original), the bolded text is the decoded output.
Our model is obviously doing extremely poorly, but the old English text of the original
might make it slightly less glaring.

3. Layer normalization almost preserves high dimensional spheres. Show that if vd ∈ Rd is
a random vector on the

√
d-sphere for each d ∈ N, then limd→∞

vd·layer_norm(vd)
d = 1.

4. For each i ∈ N, let vd(i) ∈ Rd be a random vector on the
√

d-sphere, as in Exercise 3.
Show that for any k ∈ N it holds that:

limd→∞
(
∑k

i=0 vd(i)) · layer_norm(
∑k

i=0 vd(i))
d

=
√

k

Note that both vd(i) terms above, while random, are equal to each other. Is this condition
needed?

5.q Let x = x1, . . . , xn be a point sampled uniformly at random from the n − 1-dimensional
sphere in Rn. Show that x1 is approximately distributed 2 · Beta( n−1

2 , n−1
2 ) − 1.

6. Consider the code from Figure 3.3. Can you improve it by applying layer_norm to the
result of transformer_layer on line 26? What happens if instead you keep the original
line 26, but apply layer_norm at the end, on all of out_emb in line 27?

7. Reimplement Lookup Table with a PostLN Transformer.
8. Repeat the evaluation from Figure 3.9 but train the lookup table Transformer on much

more text with longer prefixes.
9.Y Explain why performance caps at ∼20% when memorizing a lookup table with 1,000



Exercises 41

sequences and a vocabulary of size only 10 (blue line in the right-most graph of Figure
3.8) and then please let me know!

10.q Derive a tighter bound for the needed token dimensions than that from Section 3.5.1.
11.q Find an adversarial example for our construction - i.e. find a lookup table that cannot

be memorized by our construction even with very high dimensions (hint - see Chapter 6).
What’s the smallest lookup table that is adversarial?

12.q Construct a solution to the general Lookup Table problem, not just when the lookup
table is randomized. Your solution needs to support all, potentially adversarial, lookup
tables (hint - see Chapter 6).



42 Exercises



Chapter 4

Search

The noblest search is the search for
excellence.

LYNDON B. JOHNSON

Search is the first program that we’ll implement that, in some sense, actually performs
some, although trivial, computation (as Hello World and Lookup Table were just

reading fixed memory). It will get a long sequence followed by a query sequence, find the
query sequence within the long sequence, and output the following token. More precisely,
Search has a fixed parameter, prefix_len, then, given input x = x1, x2, . . . , xt, it will look
at the last prefix_len input tokens, xt+1−prefix_len, . . . , xt, search for another occurrence
of them earlier in the input, and produce the following token. We will leave as undefined
behavior the cases where the last tokens don’t appear at all earlier or appear there more
than once (although we’ll show that our implementation behaves sensibly in those cases, see
Exercise 6). You can think of Search as a generalization of Lookup Table where the
table isn’t fixed, but instead encoded in the input.

For example, with prefix_len=3:

Input: [1, 2, 3, 4, 5, 6, 1, 2, 3].

Output: 4.

43



44 Padding for Layer Normalization

Exclamation-Triangle
Beware - spoilers ahead! If you’d like to implement Search yourself, now
would be a good time to do so. Read on for the solution.

Our construction will consist of two steps, mapping to a two-layer Transformer. In the first
step/layer, we will gather in each token the representation from the preceding tokens (the
equivalent of the keys from Lookup Table) as well as maintain its own representation (the
equivalent of the values from Lookup Table). Then, in the second layer, we will construct
a query representing the last prefix_len tokens, and fetch the value associated with the
key of the previous occurrence from the previous step/layer. Note that here too, we will
only be using the attention modules of our two-layer Transformer, zeroing out the MLPs.
We’ll start by discussing another building block - how to add layer_norm-resistant padding.

4.1 Padding for Layer Normalization

Expanding on our construction from Lookup Table, we will construct our hidden repres-
entation for Search following this schematic, where the token embedding, the positional
embedding, and the padding are fixed under layer_norm:

Positional embeddingPaddingToken embedding

Practically we’ll set pos_emb to:

Positional embeddingZeros

And tok_emb to:



Full Construction 45

ZerosPaddingToken embedding

Note that we cannot use 0s for padding (the pink part above) as we’d need to ensure,
that it is, like the other blocks, fixed under layer normalization. Recall that for a vector
v ∈ Rd to be fixed by layer_norm we’d need

∑
i vi = 0 and

∑
i v2

i = d. To that effect,
to create a padding block p of d dimensions we’ll set p0 =

√
d − 1 and pi>0 = −1√

d−1 , i.e.
p = (

√
d − 1, −1√

d−1 , . . . , −1√
d−1 ) satisfying both conditions above.

In code:

1 def padding_block(d):
2 assert d >= 2, 'Padding blocks need at least 2 dimensions.'
3 return np.array([(d - 1) ** .5] + [-1 / ((d - 1) ** .5) for i in range(d - 1)])

Figure 4.1: Creating a padding block that is fixed under layer_norm.

See also optional Chapter 7.

4.2 Full Construction

We will use the standard 3D positional encoding from Section 2.3 for our positional embed-
dings. We will also use the same 3D positional encoding to represent each of our tokens (see
note below). In addition to reserving 3 dimensions for the position and token embeddings,
we will also reserve enough padding space to store prefix_len previous tokens:

Positional embeddingLayer-norm paddingToken embedding

We’ll use prefix_len + 1 attention heads. Each head hi will attend relatively i tokens
back, e.g. head 0 will attend to ourselves. Each head will copy the token representation (3
dimensions) to the appropriate place inside of our padding block. Head 0 will not need to



46 Full Construction

perform any copying, as we already include our own representation, and instead it will only
perform cleanup - deleting the layer-norm padding and position encoding to make room.

Here’s an example of our hidden representation after the first layer, in the case of prefix_len = 10.
In this figure ti denotes the token i places back, so e.g. t0 denotes our own token:

t9t8t7t6t5t4t3t2t1t0

For the second layer, we’ll construct a lookup query consisting of the last prefix_len tokens
from our own representation, and a lookup key consisting of the prefix_len tokens one
position back. Example:

Query

KeyValue

Again, for simplicity we’ll use proper cleanup.

The full code of the construction for Search is available in Figure 4.2.

4.2.1 Improving Efficiency

There are several ways in which our construction can be modified to improve its efficiency.

First, note that while we need 3 dimensions to represent a single token in isolation (as layer
normalization collapses R2 as discussed in Section 3.3), when we represent a sequence of
tokens, we could use less than 3 dimensions per token. This would result in a somewhat
more complex code.

Second, note that we only need prefix_len attention heads for the first Transformer layer.
The second layer will only use a single head for lookup (and potentially another single head
for proper cleanup). We will follow the standard Transformer convention of having a fixed



Evaluation 47

number of heads for all layers, and will observe another difference between the zero and
non-zero parameter counts here.

Third, we are using a large head size in the first layer only because we use proper cleanup,
which requires our head to have dmodel − 3 dimensions (as we don’t need to cleanup our
own token representation). Had we used messy cleanup, 3 head dimensions would suffice for
the first layer. Since the Transformer architecture uses a uniform head size for all layers,
this would not have helped in isolation (we still need a larger head size for the second layer
given our current implementation - but see the following paragraph), but again, we note
that this is a reason for a bunch more zeroed parameters.

Finally, a more important optimization could be achieved if we had used a hashing mech-
anism similar to the one we developed for Lookup Table for the keys, instead of simply
concatenating them. Here too, this would potentially make the implementation messier,
especially as we’d need to maintain 2 hashes - one for our key and another for our query.

See Exercises 4 and 5.

4.3 Evaluation

People think computers will keep them
from making mistakes. They’re wrong.
With computers you make mistakes
faster.

ADAM OSBORNE

As discussed above, there is a lot of room to make our construction more efficient. It currently
uses 3 · prefix_len dimensions per head, prefix_len + 1 heads, and 3 · (prefix_len + 1)
dimensions overall. For example, with a vocabulary of 1,000 tokens, searching for sequences
of length 10 in a block of size 100 results in 123,486 total parameters, but only 30,734 of
which are non zero parameters, and only 735 of which are not part of the token embedding!
Dealing with a much smaller vocabulary of size 10, and searching for sequences of length
only 3, still with a block of size 100, still requires 4,800 parameters (of which 535 are non 0,
of which 446 are not part of the token embeddings).

Here too, just for fun, we can try to decode new text from our search Transformer.
Specifically, we can initialize a block with existing text, perform the search, return the next
work and append it to the block. Figure 4.3 depicts what happens when we use a block
of size 100 and generate new text, searching for prefixes of size 2. Note that our word
embeddings here are completely random, so in the (frequent) cases where the prefix isn’t



48 Evaluation

1 def build_search_transformer(vocab_size, block_size, prefix_len):
2 d_head = 3 * prefix_len
3 n_heads = prefix_len + 1
4 d_model = d_head + 3
5

6 params = base_params(vocab_size, block_size, d_model)
7 params['pos_emb'] = np.pad(pos_enc_3d_array(block_size), ((0, 0), (d_model - 3, 0)))
8 ln_padding = np.tile(padding_block(d_model - 6), (vocab_size, 1))
9 tok_emb = pos_enc_3d_array(vocab_size)

10 tok_emb = np.concatenate((tok_emb, ln_padding), axis=-1)
11 params['tok_emb'] = params['out_emb'] = np.pad(tok_emb, ((0, 0), (0, 3)))
12

13 # d_head is too large for this layer (except for cleanup head0 we could do with 3 dims).
14 layer0 = base_layer(n_heads, d_model, 0, d_head)
15 params['layers'].append(layer0)
16 for head in range(n_heads):
17 theta = -head * 2 * np.pi / block_size
18 layer0['Q'][head, -3:, -3:] = pos_3d_enc_rotation_matrix(theta) * 1e8
19 layer0['K'][head, -3:, -3:] = np.eye(3)
20 if head == 0: # Head0 just cleans up everything except for our own token embedding.
21 layer0['V'][head, 3:] = np.eye(d_head)
22 layer0['P'][head, 3:] = -np.eye(d_head) # Clean up residual.
23 else:
24 layer0['V'][head, :3, :3] = np.eye(3)
25 layer0['P'][head, head * 3: (head + 1) * 3, :3] = np.eye(3)
26

27 # n_heads is too large for this layer (we could do with 1 head + cleanup).
28 layer1 = base_layer(n_heads, d_model, 0, d_head)
29 params['layers'].append(layer1)
30 layer1['Q'][0, :-3] = np.eye(d_head) * 1e8
31 layer1['K'][0, 3:] = np.eye(d_head)
32 layer1['V'][0, :3, :3] = np.eye(3)
33 layer1['P'][0, :3, :3] = np.eye(3)
34

35 # Clean up heads (we could scale head0's P by e.g. 1e7 and drop these):
36 assert prefix_len >= 2
37 layer1['Q'][1, :-3] = np.eye(d_head) * 1e8
38 layer1['K'][1, :-3] = np.eye(d_head)
39 layer1['V'][1, :-3] = np.eye(d_head)
40 layer1['P'][1, :-3] = -np.eye(d_head)
41 layer1['Q'][2, -3:, -3:] = np.eye(3) * 1e8
42 layer1['K'][2, -3:, -3:] = np.eye(3)
43 layer1['V'][2, -3:, -3:] = np.eye(3)
44 layer1['P'][2, -3:, -3:] = -np.eye(3)
45

46 return params

Figure 4.2: The full construction for Search.



Exercises 49

Figure 4.3: Example of using our Search Transformer for generating new text. In this
case, we fill the buffer (of length 100) with context from Romeo and Juliet (the non-bold
part), then search for prefixes of length 2, append the third token after them, and repeat,
generating the bolded text.

found, weird behavior is occurring. In spite of this, while this generation is still horrible
and contains many repetitions etc., it is more plausible than the one from Lookup Table
(Figure 3.9) although that one uses a much more plausible embeddings, and a much larger
Transformer baking in more “world knowledge” (or at least more knowledge of the Romeo
and Juliet text). Computation for the win!

4.4 Exercises

1. Modify the Search construction in this chapter to use the token embeddings we trained
for “Romeo and Juliet” in Lookup Table (Section 3) instead of the arbitrary ones we
used in this chapter and repeat the generation exercise of Figure 4.3. Yes, this is silly,
but fun!

2. Reimplement the Search construction from this chapter using PostLN.
3. Recall that in Chapter 3 we developed a simple construction for the weights for a

Transformer that solves Lookup Table in the case of random tables, and we’ve seen
that adversarial examples exist for that construction and so it does not work for all tables
(Chapter 3 Exercise 11). Show that non-randomized Lookup Table can be easily solved
by prepending the table to the input and using our solution for Search. Explain why
Search does not suffer from the adversarial cases.

4.q Make the construction from this chapter more efficient by using less than 3 dimensions
per token (as in Section 4.2.1).

5.q Make the construction from this chapter more efficient by using a hashing mechanism
similar to that from Section 3, as detailed in Section 4.2.1.

6.�‘…’ Show that our implementation behaves sensibly in some undefined edge cases: (1) What



50 Exercises

happens if the query sequence appears more than once in the input? (2) Set the token
embeddings to be evenly spaced, except for a subset that is closer to each other. What
happens when you search for a query that isn’t in the input, but a close sequence is?



Chapter 5

Sort

Simplicity, carried to an extreme,
becomes elegance.

JON FRANKLIN

The Sort problem is exactly what it sounds like - you get a list of numbers and need to
output a sorted version of it. More precisely, given an input consisting of a sequence

of distinct non-negative integers, represented by individual tokens, followed by a special end
of input token (for simplicity, in this chapter we’ll just use the number 0 for that purpose),
Sort will output the numbers in ascending order. For example:

Input: [6, 2, 12, 18, 7, 0]

Output: [2, 6, 7, 12, 18]

To make our lives slightly easier, we’ll assume that our program will always be called to
produce n − 1 output tokens for inputs of length n∗, so we will not be outputting the <eos>
token to end the output.

Solving Sort for an arbitrarily large vocabulary size†, as well as in case the numbers are
arbitrarily large and represented in some base with several tokens, is much more involved,

∗ We will also technically support including 0 in the input sequence, and will then produce n − 2 tokens.
† Note that in this section “vocabulary size” equals to the maximum number we allow in our input plus

one (for the 0 delimiter). The vocabulary size in the example is 19.

51



52 Min and Max

and we leave dealing with these matters for our next chapter (and to Exercises 4 and 7).
Similarly, we will not deal with repeated elements, although there is a clever extension to
the main construction for supporting those (Exercise 6). We also leave dealing with negative
numbers to Exercise 5, although the generalization there is trivial. Instead, we’ll only deal
with a unique elements from a (very) limited vocabulary, that will allow an especially elegant
and short (albeit highly unstable) construction.

Exclamation-Triangle
Beware - spoilers ahead! If you’d like to implement Sort yourself, now would
be a good time to do so. Read on for the solution.

Before dealing with sorting though, we’ll start with two related but much simpler problems
Min and Max.

5.1 Min and Max

Min gets as input a sequence of positive integers (again represented as a individual tokens)
and outputs the smallest one.

For example:

Input: [6, 2, 0, 12, 18, 7, 12, 12]

Output: 0

Similarly, Max outputs the largest number. We will only deal with Min - everything is
analogous for Max. Unlike for Sort, Min allows for repeated tokens.

Notice that Min, and likewise Max and Sort, are permutation invariant, so we will not use
positional encoding in the constructions in this chapter (i.e. we will zero out the pos_emb
table).

Very coolly, we can implement Min with a tiny construction, using only 3 model dimensions,
with a single layer attention-only Transformer. Ignoring layer normalization for a second,
place the tokens on the northern hemisphere of the unit circle, i.e. where the y coordinate
is positive as in Figure 5.1, the key and value (for hardened attention Section 3.1) for all
tokens would be their full 2D representation (i.e. we would use identity matrices for K and
V ), and likewise for the projection matrix. To make the construction work, we’d need the
query to be a positive multiple of the fixed vector (1, 0). To generate the fixed query vector



Min and Max 53

Figure 5.1: The token encoding for our trivial construction for Min, supporting sorting
sequences composed of the numbers 0 through 9.

(1, 0) we could add a couple of dimensions to the model. Instead, much more economically,
we could just zero out the query matrix Q, except for its top row which we’ll set to (0, 1),
guaranteeing a positive dot product with all of our points on the northern hemisphere
(in practice, we’d need to use slightly less than the full hemisphere to avoid orthogonal
vectors). We’ll use messy cleanup (Section 3.4) to save on some more parameters. Finally,
to support layer normalization, just use 3D positional encoding instead of 2D and repeat
the construction in 3D space. And that’s it!

Figure 5.2 contains the full construction. While this construction for sequences of up to n

numbers in the range {0, . . . , |n| − 1}, requires 6 · n + 39 parameters, remarkably, only 11 of
them are non-zero (except for those in the token embedding table)!



54 Back to Sort

1 def build_min_transformer(vocab_size, block_size):
2 params = base_params(vocab_size, block_size, d_model=3)
3 tok_emb = pos_enc_3d_array(2 * vocab_size + 2)[1:1 + vocab_size]
4 params['tok_emb'] = params['out_emb'] = tok_emb
5

6 layer0 = base_layer(n_heads=1, d_model=3, d_ff=0, d_head=3)
7 params['layers'].append(layer0)
8

9 layer0['Q'][0, :, 0] = pos_enc_3d(np.pi / 2) * 1e8
10 layer0['K'][0, :, 0] = pos_enc_3d(0)
11 layer0['V'][0] = np.eye(3)
12 layer0['P'][0] = np.eye(3) * 1e6
13

14 return params

Figure 5.2: Building the Min Transformer.

5.2 Back to Sort

We can look at Sort as a repeated application of Min, where each iteration is only applied
to a subset of the elements. The main issue to tackle is how would we only consider a
subset of the elements? Solving this isn’t very easy (making it easy might be useful much
more generally, see favorite Exercise 3). In Exercise 4 you will write the full consturction
here. Instead, in this section, we’ll only create a tiny an elegant construction that will only
support small vocabulary sizes.

The core idea would be to somehow arrange all the numbers 0 to n − 1 in space, such
that each number i is closest to i + 1, second closest to i + 2, third closest to i + 3, etc. I
recommend making sure at this point that you see why this construction would solve Sort,
and trying to come up with such a construction yourself before continuing to read.

5.2.1 Powerpoints

We’ll now construct the arrangement just described. Let’s denote by pi the point mapped
to number i. In one-dimentsonal space, the arrangement can be easily achieved by setting
p0 = 0 and pi+1 = pi + 1

2i . For two dimensions, you can just map this construction to
the northern hemisphere. See Figure 5.3. Finally, for layer normalization resistant three
dimensions, just map the construction to a hemisphere of our usual

√
3-circle perpendicular

to (1, 1, 1).



Back to Sort 55

0.0 0.2 0.4 0.6 0.8 1.0

p0

p1

p2

p3

p4

p5

p6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5

1.0

1.5

p0

p1

p2

p3

p4
p5p6

Figure 5.3: The powerpoints construction from Section 5.2.1 in one dimension (left) and
two dimensions (right).



56 Back to Sort

As is very evident from the construction, and clearly visible in Figure 5.3, this simple
construction suffers from a major drawback - namely that the distance between the points
becomes exponentially small. Nevertheless, as it turns out, on my Intel i7 CPU with Numpy’s
standard fp32 precision, the three-dimensional layer-normalization-resistant version of the
construction is still robust for up to 28 numbers.

To complete the construction, we will construct another mapping of the points in space,
qi, such that for all i, qi will be closest to pi+1, then pi+2, etc. Given our construction for
the pis above, any point in (pi+1, pi+i+pi+2

2 ) = (pi+1, pi+1 + 1
2i+2 ) will do. We’ll then use

qi = 3·pi+1+pi+2
4 . For simplicity we discuss the construction in R1 but it can be mapped

to our standard layer norm resistant circle in R3 as always. We note that qi isn’t a linear
function of pi so we’ll have to store both the pis and the qis separately. Still we’ll only
be needing 6 model dimensions to implement Sort. Figure 5.4 implements the above
construction. Note that it streches the constructed one dimensional points to the interval
[0, π] to support easier projection to a hemisphere of our layer-norm resistant circle in R3.

1 def stretch(x, mx):
2 return mx * x / x.max()
3

4 def powerpoints(n, mx=np.pi):
5 return stretch(np.cumsum(np.concatenate((np.zeros(1), 1 / 2 ** np.arange(n - 1)))), mx)
6

7 def nextpoint(ts):
8 return np.concatenate((ts[1:-1] * 3 / 4 + ts[2:] / 4, np.array([np.pi, 0])))

Figure 5.4: The construction for Powerpoints.

5.2.2 The Construction

Given the Powerpoints construction, the full construction for Sort is especially simple,
consisting of a single-layer attention only Transformer with just 6 model dimensions and
a single head. The pis will be the projection to our favorite circle of the Powerpoints
construction, and likewise for the qis. We’ll then set tok_emb to be the concatenation of
the pis and the qis, totaling 6 dimensions. The queries will simply select the qi part, the
keys will select the pi part, and we’ll set both the values and projections to the identity
matrix (we’ll scale the values by 1020 instead of cleaning up). And that’s it! Remarkably,
for sorting integers up to 28, this construction requires only 166 non-zero parameters, and
only 18 non-zero parameters outside of the token embedding table! See the full construction
for Sort in Figure 5.5.



Exercises 57

1 def build_sort_transformer(n=28, block_size=100):
2 pi = pos_enc_3d(powerpoints(n)).T
3 qi = pos_enc_3d(nextpoint(powerpoints(n))).T
4

5 params = base_params(vocab_size=n, block_size=block_size, d_model=6)
6

7 layer0 = base_layer(n_heads=1, d_model=6, d_ff=0, d_head=6)
8 layer0['Q'][3:, :3] = np.eye(3) * 1e20
9 layer0['K'][:3, :3] = np.eye(3)

10 layer0['V'][:] = np.eye(6) * 1e20 # Instead of cleanup.
11 layer0['P'][:] = np.eye(6)
12

13 params['tok_emb'] = params['out_emb'] = np.concatenate((pi, qi), axis=1)
14 params['layers'].append(layer0)
15

16 return params

Figure 5.5: The construction for Sort supporting integers up to 28.

5.3 Exercises

1. Make a slight modification of our construction for Sort to support a vocabulary of up to
33 tokens‡.

2.q On my machine, using standard Numpy precision of fp32, the trivial construction for
Min works robustly up to tens of thousands of numbers, but has an occasional error,
usually an off-by-one, for hundreds of thousands of numbers. How would you make it
stable for millions of numbers?

3.�q Make a small change to the architecture of the Transformer to solve the issue discussed
in section 5.2 and enable a robust and simple solution for sorting that is very similar to
that of Min. Is this modification useful more generally?

4.q Construct a solution for Sort that would work on large vocabularies (e.g. 1,000
numbers).

5.P How would you change the construction of Sort to support negative numbers?
6.q How would you change the construction of Sort to support repeated elements?
7.q Change the construction from Exercise 4 to support multi-token numbers - i.e. the

input would consist of comma-separated tokens represented in base 10. Hint: see the

‡ Note that the exact numbers here might depend on the hardware and software configuration used. The
numbers reported here are using default Numpy fp32 precision on a 11th Gen Intel Core i7. If you are
using a different setup, tweak this problem such that the base construction would be the maximum
supported by your configuration and try to squeeze a few more vocabulary entries with a small change.



58 Exercises

construction from Chapter 6.
8.q Can you train a Transformer in the standard way (i.e. with a dataset and optimization

procedure) to preform Sort? How big of a dataset / Transformer do you need? Can you
guarantee it works 100% of the time?



Chapter 6

Decimal Addition

God does arithmetic.

CARL FRIEDRICH GAUSS

The final program we’ll implement in this book is Decimal Addition. It will be the
most complex program we’ll tackle, putting together most of the building blocks we’ve

developed thus far, plus some new ones. The goal would be to get two numbers in decimal
representation and output their sum, also in decimal representation. For example:

Input: [4, 5, +, 7, 8, =]

Output: [1, 2, 3]

The vocabulary will consist of 12 symbols (10 symbols for the digits, and 2 symbols for ‘+’
and ‘=’). The main construction in the text will get numbers of a specific length (i.e. with
a fixed number of digits) and output numbers with a specific number of digits, via zero
padding. For example, when we build our Transformer for adding 2-digit numbers the input
numbers will always have 2 digits and the output number will always have 3 digits, so the
input for adding 4 and 2 would be [0, 4, +, 0, 2, =] and the output would be [0, 0,
6]. Exercise 20 asks you to implement a harder version without zero padding.

59



60 Attention Is Not All You Need

Exclamation-Triangle
Beware - spoilers ahead! If you’d like to implement Decimal Addition
yourself, now would be a good time to do so. Read on for the solution. More
generally, I’ll be solving many of the exercises in the body of the text. Each
time, I’ll add a reference to the relevant exercise, but will not add extra spoiler
tags. If you’d like to attempt the puzzles yourself, consider doing so whenever
an exercise is mentioned.

6.1 Attention Is Not All You Need

Remarkably, we’ve managed to implement all of the programs until now using just the
attention module! Are the MLP’s useless? Is attention really all we need?

Unfortunately no. Well, at least with a simple single layer Transformer. We’ll show that
with only the attention mechanism we can’t even implement a much simpler sub-problem
of adding two 1-digit numbers mod 10 on such a single layer Transformer∗. Let’s take 10
linearly independent vectors V = v1, . . . , v10 in a 20-dimensional space (we’ll soon observe
that more than 20 won’t help), i.e. vi ∈ R20. Now, assume we’ll read the first number with
one attention head and the second number with a second attention head. We could choose
the value and projection matrices as we wish. Denote the value matrices for the first and
second head respectively by M1 and M2 and the projection matrix by P †. Now, we’d like
P (M1vi + M2vj) = vi+j (mod 10).

Now, if the space spanned by M1vi + M2vj was 100 dimensional, we could treat the above
as a system of 100 equations and solve for P . Unfortunately, M1V and M2V are each at
most only 10 dimensional spaces (being spanned by 10 vectors), so the space spanned by
their direct sum is at most 20 dimensional (and actually, the dimension of the space spanned
by M1vi + M2vj is at most 19 dimensional - see Exercise 1).

Ok, so we can’t do something that simple, but we only have 10 possible values for vi+j (mod 10),
so could there still be a linear solution?

Let xi = PM1vi and yj = PM2vj . Now note that since xi+yj = (xi+y0)+(x9+yj)−(x9+y0),
all the elements of the following matrix are fully determined by the 19 elements on the top
row and rightmost column, i.e. the colored cells. That solves Exercise 1.
∗ Technically we’ll ignore the residual connection, or equivalently, assume that we’re performing proper

cleanup. Exercise 13 asks you to consider what happens in the general case.
† For simplicity and WLOG we use a single projection matrix from a larger space. We could even

completely ignore the projection and just fold it into M1 and M2.



Attention Is Not All You Need 61



x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

y0 x0 + y0 x1 + y0 x2 + y0 x3 + y0 x4 + y0 x5 + y0 x6 + y0 x7 + y0 x8 + y0 x9 + y0

y1 x0 + y1 x1 + y1 x2 + y1 x3 + y1 x4 + y1 x5 + y1 x6 + y1 x7 + y1 x8 + y1 x9 + y1

y2 x0 + y2 x1 + y2 x2 + y2 x3 + y2 x4 + y2 x5 + y2 x6 + y2 x7 + y2 x8 + y2 x9 + y2

y3 x0 + y3 x1 + y3 x2 + y3 x3 + y3 x4 + y3 x5 + y3 x6 + y3 x7 + y3 x8 + y3 x9 + y3

y4 x0 + y4 x1 + y4 x2 + y4 x3 + y4 x4 + y4 x5 + y4 x6 + y4 x7 + y4 x8 + y4 x9 + y4

y5 x0 + y5 x1 + y5 x2 + y5 x3 + y5 x4 + y5 x5 + y5 x6 + y5 x7 + y5 x8 + y5 x9 + y5

y6 x0 + y6 x1 + y6 x2 + y6 x3 + y6 x4 + y6 x5 + y6 x6 + y6 x7 + y6 x8 + y6 x9 + y6

y7 x0 + y7 x1 + y7 x2 + y7 x3 + y7 x4 + y7 x5 + y7 x6 + y7 x7 + y7 x8 + y7 x9 + y7

y8 x0 + y8 x1 + y8 x2 + y8 x3 + y8 x4 + y8 x5 + y8 x6 + y8 x7 + y8 x8 + y8 x9 + y8

y9 x0 + y9 x1 + y9 x2 + y9 x3 + y9 x4 + y9 x5 + y9 x6 + y9 x7 + y9 x8 + y9 x9 + y9


Now, note that since we want xi + yj = vi+j (mod 10), all the elements on each of the
anti-diagonals of the matrix must be equal to each other (i.e. all the elements with the same
color here must be equal to each other):



x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

y0 x0 + y0 x1 + y0 x2 + y0 x3 + y0 x4 + y0 x5 + y0 x6 + y0 x7 + y0 x8 + y0 x9 + y0

y1 x0 + y1 x1 + y1 x2 + y1 x3 + y1 x4 + y1 x5 + y1 x6 + y1 x7 + y1 x8 + y1 x9 + y1

y2 x0 + y2 x1 + y2 x2 + y2 x3 + y2 x4 + y2 x5 + y2 x6 + y2 x7 + y2 x8 + y2 x9 + y2

y3 x0 + y3 x1 + y3 x2 + y3 x3 + y3 x4 + y3 x5 + y3 x6 + y3 x7 + y3 x8 + y3 x9 + y3

y4 x0 + y4 x1 + y4 x2 + y4 x3 + y4 x4 + y4 x5 + y4 x6 + y4 x7 + y4 x8 + y4 x9 + y4

y5 x0 + y5 x1 + y5 x2 + y5 x3 + y5 x4 + y5 x5 + y5 x6 + y5 x7 + y5 x8 + y5 x9 + y5

y6 x0 + y6 x1 + y6 x2 + y6 x3 + y6 x4 + y6 x5 + y6 x6 + y6 x7 + y6 x8 + y6 x9 + y6

y7 x0 + y7 x1 + y7 x2 + y7 x3 + y7 x4 + y7 x5 + y7 x6 + y7 x7 + y7 x8 + y7 x9 + y7

y8 x0 + y8 x1 + y8 x2 + y8 x3 + y8 x4 + y8 x5 + y8 x6 + y8 x7 + y8 x8 + y8 x9 + y8

y9 x0 + y9 x1 + y9 x2 + y9 x3 + y9 x4 + y9 x5 + y9 x6 + y9 x7 + y9 x8 + y9 x9 + y9


Putting these two constraints together, we get that given a = x0 + y0 and b = x1 + y0,
the rest of the matrix is fully determined. And specifically, we get that v0 = a, v1 = b,
v2 = 2b − a, v3 = 3b − 2a, …, v9 = 9b − 8a, and v10 = 10b − 9a. Since v0 = v10, we get that
a = 10b − 9a, or a = b making the entire matrix degenerate.

Ok, but what if we relax the requirement and don’t ask for xi + yj to equal vi+j (mod 10),
but instead just ask that xi + yj = vi+j? I.e. we extend our set of vectors v to size 19,
but require that they are linearly selectable (by the output embedding later). Specifically,
we require that for each k there exists a vector wk such that wk · vk > wk · vl for any
l 6= k. Unfortunately, since vk = kb − (k − 1)a, we get that for any vector w it holds that



62 Analog Addition

w · vk = k[(w · b) − (w · a)] + C where C doesn’t depend on k. And the above is a linear
function of k, therefore always reaching its maximum value either for k = 0 or for k = 19,
and the above equation cannot hold.

Finally, a construction that doesn’t work with attention only! Time to use the MLP!

Let’s recap: if we set a = (1, 0, 0, . . . ) and b = (0, 1, 0, 0, . . . ) then the with the above
construction the attention layer outputs (1 − k, k, 0, 0, . . . ) where k = i + j. We’ll soon see
how the MLP will convert these vectors to linearly-selectable ones, but before that, let’s
consider if there is a way to achieve the above with a simpler construction. Exercise 7 asks
you to implement this more elaborate construction.

6.2 Analog Addition

Our problem Decimal Addition is about adding integers, but what if we looked at an
analog version of it where the integers are treated as floats? This approach would suffer
from the usual issues with analog computation like numerical instability, but let’s entertain
this idea for a bit longer.

Given two numbers a and b represented in decimal notation as a1, . . . , al and b1, . . . , bl, we
have that a + b = (a1 + b1) + 10 · (a2 + b2) + · · · + 10l−1 · (al + bl) =

∑l
i=1 10i−1(ai + bi).

I.e., the numerical value of the sum is a linear function of the numerical value of the digits.
The attention mechanism can perform exactly such linear computations, so could we use
the attention mechanism to perform the addition for us?

We’d need to start by having the embedding for each of the tokens for each digit hold its
own numerical value. For simplicity, let’s just dedicate a single dimension to hold this value.
For example, the token for 2 will have the actual value 2 in this dimension.

First, we’d need to deal with layer normalization, but that’s not hard. Let’s assume that we
encode the digit’s value x in the 0th dimension, have arbitrary values in the 1st and 2nd
dimensions, and 0s in the remaining dimensions. If the value in the 1st dimension is a the
value in the second dimension must be −x − a to guarantee 0-mean. For example, with 10
dimensions we’d have:

x a −x − a 0 0 0 0 0 0 0

Since the above construction already has mean 0, to be fixed under layer normalization,
we’d only need to ensure it has unit variance. In other words, that x2 + a2 + (−x − a)2 = k,
where k is the number of dimensions. We get that a2 + xa + x2 − k

2 = 0, and solving for



Analog Addition 63

a we get a = −x±
√

2k−3x2

2 . That means that we’d need at least 3
2 x2 dimensions - if we’d

like to support additions of numbers of, say, up to 1,000, that’s already over a million
dimensions! Luckily, we can obviously just scale all of our numbers by some fixed factor,
say 1

1,000 , meaning that just three dimensions would be enough.

Now, with l digits in a and l digits in b, we could have 2l attention heads, each performing
hard attention to the relevant digit (Section 3.1) and aggregating the value from our special
dimension, multiplied by the correct coefficient. For example, with l = 3 we could use 6
attention heads:

<bos> 1 2 3 + 4 5 6 =

1(h0)10(h1)100(h2)

1(h3)10(h4)100(h5)

Notice that since the coefficient for the ith digit of a and the ith digit of b are the same, in
theory we’d only need l attention heads, 3 in this case, but we’d need to multiply the values
multiplier by 2 (as each head will read the average of both positions):

<bos> 1 2 3 + 4 5 6 =

2(h0)20(h1)200(h2)

2(h0)20(h1)200(h2)

Unfortunately, with our rotation positional encoding it would be impossible to construct the
above attention matrix, so we’ll use the former construction, except for the single digit case,
where we will share a single attention head for both digits (see Exercises 10, 11, and 12).

Let’s recap - we used 3 dimensions in the token embedding for each digit to hold its own
value (divided by a large number like 1,000) and then used a single attention module with l

attention heads, after which our "=" token holds the actual answer of the addition in one of
its dimensions (let’s assume we had a zeroed out dimension to begin with to hold this sum,
or that we’re using another head for clean up). Since we’re using PreLN, the correct value
will be written as-is to the residual stream. But how do we decode it back into digits?



64 Universal Approximation With the MLP

6.3 Universal Approximation With the MLP

In this section we’ll develop a more general construction.

Theorem 6.1 (The MLP Can Exactly Compute Any Function on a Finite Subset of R).
Given a finite set S ⊂ R and any function f : S → Rd for some d, there exists an MLP
with a single hidden layer using the ReLU non-linearity that can exactly evaluate f on S.
Moreover, this MLP needs no more than 3|S| hidden dimensions.

In fact, in Exercise 4, you’ll develop a more efficient construction requiring only |S| − 1
hidden neurons.

Towards proving Theorem 6.1, the following Definition and Lemma would be helpful:

Definition 6.1 (Spike). A function f : R → R is a standard spike if f(x) = 0 when
x ≤ −1 or x ≥ 1, and f(x) = 1 when x = 0. If f(x+x0)

a0
is a standard spike, then f(x) is a

spike around x0 with value a0.

Lemma 6.1 (The MLP Can Output a Standard Spike). There exists an MLP from R to R,
i.e. with one input dimension and one output dimensions, and with 3 hidden dimensions,
such that the MLP computes a standard spike: MLP (x) = 0 if x ≤ −1 or x ≥ 1, and
MLP (x) = 1 if x = 0.

Proof. Denote the MLP’s input by x, and let M1, b1, M2, b2 be the MLP’s weights. The
function calculated by the MLP is MLP (x) = M2 max (M1x + b1, 0) + b2. Let the MLP

have 3 hidden units. Set M1 =

1
1
1

, b1 =

 0
1

−1

, M2 = (−2 1 1), and b2 = (0). Then

the MLP computes a standard spike.

Figure 6.3 gives some more intuition for the construction.

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
ReLU(x)

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
ReLU(x 1) ReLU(x)

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
ReLU(x + 1) ReLU(x)

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
ReLU(x 1) + ReLU(x + 1) 2ReLU(x)



Back to Single Digit Addition 65

Note that we can use an even more economical construction for a weakened spike (i.e. a
spike that is allowed to be negative far from x0 instead of being strictly 0). See Exercise 5.

We immediately get:

Corollary 6.1 (The MLP Can Output Any Spike). For any a0, x0 ∈ R, there exists an
MLP from R to R, i.e. with one input dimension and one output dimensions, and with 3
hidden dimensions, such that the MLP calculates a spike around a0 with value x0.

Proof. Exercise 2.

And finally, from Corollary 6.1, the proof of Theorem 6.1 follows trivially:

Proof of Theorem 6.1. Exercise 3.

Figure 6.1 implements the solution to Theorem 6.1.

1 def build_MLP(x0s, a0s):
2 S = np.sort(x0s)
3 min_sep = np.min(S[1:] - S[:-1])
4 M1 = np.array([[1, 1, 1] * len(x0s)])
5 b1 = np.concatenate([np.array([0, 1, -1]) - x0 / min_sep for x0 in x0s])
6 M2 = np.stack([
7 np.concatenate([np.array([-2, 1, 1]) * a0[i] for a0 in a0s])
8 for i in range(len(a0s[0]))], axis=-1)
9 b2 = np.array([0] * len(a0s[0]))

10 return M1 / min_sep, b1, M2, b2

Figure 6.1: An implementation of Theorem 6.1.

6.4 Back to Single Digit Addition

Let’s recap our situation: given input numbers a and b we have, after the attention layer, a
dimension holding a + b, and we also have an MLP that can calculate any function on a
finite set!

How about we just iterate on the 19 possible values of a + b and for each one output the
desired vector?

Unfortunately, as always, we need to take care of our old friend, layer normalization. Luckily,
that is very easy - we don’t need to resist it, i.e. we don’t need to make sure that the MLP



66 MLP Cleanup

actually gets a + b as input. Instead, we just need to make sure that each of the possible
19 values will become a distinct input for the MLP. Unfortunately, again, that is hard to
do with just 3 dimensions (or rather, it’s easy to do it, but then we’d need to have a much
larger MLP, as we’ll need to deal separately with different pairs of values that have the same
sum - see Exercise 8) - so instead, we’ll add a 4th dimension to our embedding:

x 1 a −x − a − 1

Solving again for a, we get a = −x−1±
√

−3x2−2x+5
2 .

And that’s almost it! Just need to deal with that pesky cleanup and we’ll be ready for our
(single digit modular) modular addition!

6.5 MLP Cleanup

Proper cleanup (Section 3.4) for the MLP is slightly more nuanced. Specifically, due to the
ReLU non-linearity, we can’t just “store” a copy of the residual and negate it - it could
be negative! Luckily a simple trick saves the day. Let’s say that we’re using d model
dimensions. Add d activations to the MLP’s hidden layer, and copy the MLP’s input there
(i.e. concatenate I to M1). To mitigate losing information about negative values, add a
large positive bias vector to these new dimensions (i.e. concatenate a d-dimensional vector
containing large numbers to b1), larger in absolute magnitude than the smallest possible
negative value in the input. Then, subtract these new dimensions from the output (i.e.
concatenate −I to M2), and finally, again add the same bias vector to the output (sum
it to b2). Note that you need to add the large bias vector twice, M2 already reversed its
initial effect. For all of this to work at all, we’d need the MLP to even see the input - i.e.
we’d need to make the attention module’s output resistant to layer normalization (otherwise,
we’d be cleaning up the layer normalized input!). Getting this to work is more involved -
see Exercise 9.

Messy cleanup for the MLP works just like for attention - just multiply the output by a
huge number and make the residual negligible noise. This is the approach we’ll take.



Full Construction for Single Digits Modular Addition 67

1 def build_single_digit_mod_transformer():
2 params = base_params(vocab_size=10, block_size=2, d_model=4)
3

4 tok_emb = np.empty((10, 4))
5 for i in range(10):
6 x = i / 100
7 a = (-x - 1 + (-3 * x ** 2 - 2 * x + 5) ** 0.5) / 2
8 tok_emb[i] = np.array([x, 1, a, -x - a - 1])
9 params['tok_emb'] = params['out_emb'] = tok_emb

10

11 layer0 = base_layer(n_heads=1, d_model=4, d_ff=3 * 19, d_head=4)
12 layer0['V'][0, :2, :2] = np.eye(2) * 1e4 # * 1e4 for messy cleanup.
13 layer0['V'][0, 0, 0] *= 2 * 100 # * 2 for averaging, * 100 for tok_emb factor.
14 layer0['P'][0, :2, :2] = np.eye(2)
15

16 x0s = [layer_norm(np.array([i * 1e4, 1e4, 0., 0.]))[0] for i in range(19)]
17 a0s = [tok_emb[i % 10] * 1e10 for i in range(19)]
18 layer0['M1'][0], layer0['b1'], layer0['M2'], layer0['b2'] = build_MLP(x0s, a0s)
19

20 params['layers'].append(layer0)
21

22 return params

Figure 6.2: A Transformer for single digit addition mod 10.

6.6 Full Construction for Single Digits Modular Addi-
tion

Putting everything together, Figure 6.2 implements single digit modular decimal addition.
Recall that the input in this case is a list of length exactly 2, for the two digits to add.

This construction uses only 4 model dimensions has only 629 total parameters (379 non zero
parameters).

6.7 Multi-Digit Modular Addition

Let’s now turn our attention (pun not intended) to multi-digit addition (still mod 10). Here
are example inputs and outputs for 2 digit numbers:

Input: [1, 2, '+', 3, 3, '=']

Output: 5



68 Full Construction

Note that the output here is still just a single digit‡. We’ll use a simple tokenizer over a
vocabulary of size 12, where tokens 0-9 will correspond to the digits they represent, and ’+’
and ’=’ will be represented by 10 and 11 respectfully.

We’ll be able to mostly reuse our construction for single digit addition, with some important
modifications. First, we’d need to include position encoding and therefore increase the
model size to 7.

Next, we’ll now use proper cleanup for the attention module, otherwise, without proper
care, we might run into precision issues for the MLP module (see Exercise 14). Note that
since dmodel = 7 in this case, but dhead = 4, and since we aren’t attending to ourselves
otherwise, if we actually wanted to cleanup everything we’d have no choice but “waste”
2 attention heads just for cleanup. Instead, since we’d like to keep the value and fixed
constant 1, and since the position encoding are already normalized (so we can keep them
without affecting normalization) it’s enough to only clean up the two padding dimensions
for the token embedding (a and −x − a − 1 above), so with proper care a single cleanup
head suffices. With proper cleanup we can drop the large factors everywhere, which is nice.

Putting everything together, Figure 6.3 performs multi-digit additions mod 10.

This time, for adding single digit numbers, we require 7 model dimensions, 1,226 parameters
(432 of these are non-0). For 2 digit numbers, still with 7 model dimensions, we’d need
9,508 parameters (3,646 are non zero, and almost all of them, 3,522, are part of the MLP
module). Scaling to adding 3 digit numbers, mod 10, requires 90,690 parameters (or 35,542
non zero parameters), and again almost all of them (89,962 or 35,382 for the non zero ones)
are used for the MLP module. Note that the minimum separation between input values
for the MLP module (the min_sep variable in the build_MLP function) becomes very small
(around 1.4e-9) for 3 digit additions (see Exercise 16).

6.8 Full Construction

First, note that if we wanted to output just the tens digit, or just the hundreds digit, we’d
need to change a single line in Figure 6.3 (Exercise 15).

Now, the first thing we’d need to address for the full Decimal Addition transformer
is the way we read values with our attention mechanism attending to relative positions.
Specifically, note that the relative distance between the output digit and the input digits

‡ The output technically depends only on the least significant digits of the input numbers, so we could
just ignore the other digits and solve it exactly as above. As we are building towards the general
addition construction we will not do that (if it really bothers you, imagine the addition is performed
mod 7 instead of mod 10).



Full Construction 69

1 from itertools import product
2

3 def build_multi_digit_mod_transformer(n_digits):
4 vocab_size = 10 + 2 # 10 digits, '+' (10) and '=' (11).
5 block_size = 2 * n_digits + 2 # n_digits for each number +2 for '+' and '='.
6 d_model = 7 # 4 for token, 3 for position.
7 params = base_params(vocab_size, block_size, d_model)
8

9 tok_emb = np.empty((vocab_size, 4))
10 for i in range(10):
11 x = i / 100
12 a = (-x - 1 + (-3 * x ** 2 - 2 * x + 5) ** 0.5) / 2
13 tok_emb[i] = np.array([x, 1, a, -x - a - 1])
14 tok_emb[10] = tok_emb[11] = tok_emb[0] # Anything normalized.
15 tok_emb = np.pad(tok_emb, ((0, 0), (0, 3)))
16 params['tok_emb'][:] = params['out_emb'][:] = tok_emb
17 params['pos_emb'][:] = np.pad(pos_enc_3d_array(2 * n_digits + 2), ((0, 0), (4, 0)))
18

19 out_range = 2 * (10 ** n_digits) - 1
20 n_heads = 2 * n_digits + 1 # 1 cleanup head.
21 layer0 = base_layer(n_heads, d_model, d_ff=3 * out_range, d_head=3)
22

23 for head, (unit_pos, digit) in enumerate(product([1, n_digits + 2], range(n_digits))):
24 theta = -(unit_pos + digit) * 2 * np.pi / block_size
25 layer0['Q'][head, -3:, -3:] = pos_3d_enc_rotation_matrix(theta) * 1e6
26 layer0['K'][head, -3:, -3:] = np.eye(3)
27 layer0['V'][head, 0, 0] = 100 * (10 ** digit)
28 layer0['P'][head, 0, 0] = 1
29

30 # Cleanup head:
31 layer0['Q'][-1, -3:, -3:] = (pos_3d_enc_rotation_matrix(0) * 1e6)
32 layer0['K'][-1, -3:, -3:] = np.eye(3)
33 layer0['V'][-1, 2:4, :2] = -np.eye(2)
34 layer0['P'][-1, 2:4, :2] = np.eye(2)
35

36 x0 = lambda i: np.concatenate((np.array([i, 1., 0, 0]), params['pos_emb'][0, -3:]))
37 x0s = [layer_norm(x0(i))[0] for i in range(out_range)]
38 a0s = [tok_emb[i % 10] * 1e10 for i in range(out_range)]
39 layer0['M1'][0], layer0['b1'], layer0['M2'], layer0['b2'] = build_MLP(x0s, a0s)
40

41 params['layers'].append(layer0)
42

43 return params

Figure 6.3: A Transformer for multi-digit addition mod 10.



70 Exercises

changes after each digit we output (it increases by 1). As a simple solution in our case, we’ll
read values from absolute positions instead of from relative positions (see Exercise 17).

Since our MLP can translate any one dimensional value to any output, our strategy here
would be to simply encode both the numerical value as well as the output digit position
into this single value. The one thing to ensure is that the minimum separation between
encoded values is not too small (see Exercise 18). To encode the position into this single
dimension, we’ll just sum the first dimension of the position embedding to our result number
(see Exercise 19).

And... That’s it folks! Figure 6.4 puts everything together. I have tested this on numbers of
up to 3 digits each (so the result is up to 4 digits). How small are our programs? Well, for
adding 1-digit numbers this construction needs 2,088 parameters (737 of these are non zero),
for adding 2-digit numbers we need 27,432 parameters (10,440 are non zero), and finally, for
adding up 3-digit numbers we need 360,576 parameters (139,267 are non zero). Note that
almost the entirety of the parameters in this construction, especially for the larger versions,
lie in the MLPs:

Inputs |{param}| |{param 6= 0}| |{param ∈ MLP}| |{param 6= 0 ∈ MLP}|

1-digit numbers 2,088 737 1,717 (82.2%) 648 (87.9%)
2-digit numbers 27,432 10,440 26,872 (98.0%) 10,326 (98.9%)
3-digit numbers 360,576 139,267 359,827 (99.8%) 139,128 (99.9%)

Note that in all cases we are using just 7 model dimensions, but the very high dimensional
MLPs (much more than the standard 4 · dmodel) would force our parameter count to go way
up had we used the standard configuration.

6.9 Exercises

1.P Show that given two sets of n and m vectors in Rd, v1, . . . , vn and u1, . . . , um, the
space spanned by the n · m vectors {vi + uj |, 1 ≤ i ≤ n, 1 ≤ j ≤ m} is at most n + m − 1
dimensional.

2.P Prove Corollary 6.1.
3.P Prove Theorem 6.1.
4. The MLP can exactly compute any function on a finite subset of size n of R with only

n − 1 hidden neurons. Prove a stronger version of Theorem 6.1: show that in order
to memorize a function on a finite subset of size n, you only need a 1-layer MLP with



Exercises 71

1 def build_decimal_addition_transformer(n_digits):
2 vocab_size = 10 + 2 # 10 digits, '+' (10) and '=' (11).
3 block_size = 2 * n_digits + 2 + n_digits # An extra n_digits for the result.
4 d_model = 7 # 4 for token, 3 for position.
5 params = base_params(vocab_size, block_size, d_model)
6

7 tok_emb = np.empty((vocab_size, 4))
8 for i in range(10):
9 x = i / 100

10 a = (-x - 1 + (-3 * x ** 2 - 2 * x + 5) ** 0.5) / 2
11 tok_emb[i] = np.array([x, 1, a, -x - a - 1])
12 tok_emb[10] = tok_emb[11] = tok_emb[0] # Anything normalized.
13 tok_emb = np.pad(tok_emb, ((0, 0), (0, 3)))
14 params['tok_emb'][:] = params['out_emb'][:] = tok_emb
15 params['pos_emb'][:] = np.pad(pos_enc_3d_array(3 * n_digits + 2), ((0, 0), (4, 0)))
16

17 out_range = 2 * (10 ** n_digits) - 1
18 n_heads = 2 * n_digits + 1 # 1 cleanup head.
19 layer0 = base_layer(n_heads, d_model, d_ff=(n_digits + 1) * 3 * out_range, d_head=3)
20

21 for head, (num_pos, digit) in enumerate(product([0, n_digits + 1], range(n_digits))):
22 layer0['Q'][head, 1] = params['pos_emb'][num_pos + n_digits - 1 - digit, -3:] * 1e6
23 layer0['K'][head, -3:, -3:] = np.eye(3)
24 layer0['V'][head, 0, 0] = (10 ** digit) * 100
25 layer0['P'][head, 0, 0] = 1 / 100
26

27 # Cleanup and mix head:
28 layer0['Q'][-1, -3:, -3:] = (pos_3d_enc_rotation_matrix(0) * 1e6)
29 layer0['K'][-1, -3:, -3:] = np.eye(3)
30 layer0['V'][-1, 2:4, :2] = -np.eye(2)
31 layer0['P'][-1, 2:4, :2] = np.eye(2)
32 layer0['V'][-1, 0, -1] = -1
33 layer0['V'][-1, -3, -1] = 1
34 layer0['P'][-1, 0, -1] = 1
35

36 x0 = lambda i, p: np.concatenate((np.array([i / 100 + p[-3], 1., 0, 0]), p))
37 x0s, a0s = [], []
38 for i in range(out_range):
39 for p in params['pos_emb'][-n_digits-1:, -3:]:
40 x0s.append(layer_norm(x0(i, p))[0])
41 for digit in range(n_digits, -1, -1):
42 a0s.append(tok_emb[i // (10 ** digit) % 10] * 1e10)
43

44 layer0['M1'][0], layer0['b1'], layer0['M2'], layer0['b2'] = build_MLP(x0s, a0s)
45

46 params['layers'].append(layer0)
47

48 return params

Figure 6.4: A Transformer for Decimal Addition.



72 Exercises

n − 1 hidden neurons. Hints: see the construction in [Baum, 1988] and Proposition 2 in
[Bubeck et al., 2020] as starting points.

5.P Consider the following definition:
Definition 6.2 (Weak Spike). A function f : R → R is a weak spike if f(x) ≤ 0 if
x ≤ −1 or x ≥ 1, and f(x) = 1 if x = 0.
Show that you can improve the construction from Lemma 6.1 to only use 2 hidden MLP
dimensions if you only need to construct a weak spike instead of a standard spike.

6.P How many parameters would our construction for single digit modular addition (Figure
6.2) require if we used base b instead of base 10?

7.P Implement the construction from Section 6.1 outputting (1 − k, k, 0, 0, . . . ).
8. Re-implement the construction for single figure addition from Figure 6.2 using just 3

model dimensions. What happened to the total parameter count?
9. Re-implement the construction for single figure addition from Figure 6.2 using proper

cleanup (Section 3.4).

10. Show that the matrix



δ0 δ1 δn−1 δn

δ1 δ0 δn−2 δn−1

δn−1 δn−2 δ2 δ1

δn δn−1 δ1 δ0


where the (i, j)th element equals

δ|i−j| = cos(α|i − j|) for some α, is of rank at most 2 (hint: you can show something
much more general).

11.P Make the economic construction from the end of Section 6.2 work by changing the
position embeddings (hint: what happens if the position embeddings are not unique?).

12.q Make the economic construction from the end of Section 6.2 work without changing the
position embeddings - i.e. use only one attention head for reading 2 digits in the same
decimal position from both input numbers in parallel for multi digit numbers (note that
Section 6.2 and Figure 6.2 emplyed this trick only for single digit numbers). How many
more model dimensions did you need?

13.Y Does the proof from Section 6.1 hold when you take into account the residual connection?
14. Get the construction for the multi-digit addition mod 10 (Figure 6.3) to work without

the extra proper cleanup head in the attention layer. How many more parameters do you
need?

15.P Change one line in Figure 6.3 so that the output is just the tens-digit of the addition,
i.e. if we’re adding a and b, output b a+b

10 c (mod 10).
16. Change the code in Figure 6.3 such that min_sep is at least a couple of orders of magnitude

higher for 3 digit numbers. What is it for 5 digit numbers? How many extra parameters



Exercises 73

did you need?
17.q Change our solution for Decimal Addition (Figure 6.4) to allow for an arbitrary

prefix, that is ignored, before the input. Specifically, attend to relative positions instead
of absolute positions.

18. Add multiplicative constants to both value and position parameter in Figure 6.4 to
maximize min_sep.

19. What happens to our construction in Figure 6.4 if we use the first dimension of the
position embedding instead of the third? Is there a better linear combination?

20.Y Change our construction of Decimal Addition to use no zero padding. You can still
expect your input digits to be up to a certain pre-specified length, but they can be
shorter. Likewise, don’t output padding zeros in your result. Remember to increase the
vocabulary size to 14 (add 2 new symbols for the sentinel tokens <bos> and <eos>). Your
Transformer should support both 4+8=12 and 84+88=172.

21.Y Implement Decimal Multiplication which performs, well, decimal multiplication
instead of addition.



74 Exercises



Part III

Further Topics

75





Chapter 7

The OG Encodings

Debugging is twice as hard as writing
the code in the first place. Therefore, if
you write the code as cleverly as
possible, you are, by definition, not
smart enough to debug it.

BRIAN KERNIGHAN

So far in this booklet we have not made use of the original sinusoidal embeddings∗ from
the original Transformer paper [Vaswani et al., 2017] (henceforth we’ll refer to them

simply as the OG embeddings). Why is that? We did try to make our programs efficient,
and using the OG sinusoidal embeddings instead of “learned” embeddings would have saved
us all of the position embedding parameters - for our toy programs, often a considerable
part! We will dedicate this section to considering the OG embeddings more deeply and to
then answering this question.

Let’s start by recalling the definition of the OG encodings:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
∗ As you may have noticed by now, I am using the words “encodings” and “embeddings” interchangeably

throughout this work.

77



78

Figure 7.1 shows a simple implementation for the OG embedding, and Figure 7.2 shows an
example of the OG encoding for 64 positions and 128 dimensions.

1 def og_embedding(block_size, d):
2 t = np.arange(block_size)[:, None] / (10_000 ** (2 * np.arange(d // 2) / d))[None, :]
3 res = np.empty((block_size, d))
4 res[:, 0::2] = np.sin(t)
5 res[:, 1::2] = np.cos(t)
6 return res

Figure 7.1: The OG embedding.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

Figure 7.2: The OG embedding with a block size of 64 and dmodel 128.

Recall that we discussed three properties of embeddings: (1) being fixed under layer
normalization (Section 2.3), (2) being linearly shiftable which allows easy access to relative
positions (Section 3.2), and (3) leaving enough free space for computation (Section 4.1).
We’ll soon consider the OG embeddings from these perspectives, and then we’ll define and
investigate a fourth interesting property.

First though, we’ll define a generalization and reformulation of the OG embedding that will
make the rest of discussion much easier.



Rotation Encoding 79

Exclamation-Triangle
Beware - spoilers ahead! If you haven’t yet and would like to think a bit more
about the OG embeddings (Exercise 1) now would be a good time.

7.1 Rotation Encoding

Let’s start with a couple of basic definitions:

Definition 7.1 (Real Encoding). A real encoding of size q into d dimensions is
simply a function f : Zq → Rd.

Definition 7.2 (Complex Encoding). A complex encoding of size q into d dimensions
is simply a function g : Zq → Cd.

As in Chapter 3 I’m using the notation Zq as a shorthand for the set {0, . . . , q − 1} denoting
our vocabulary. Given a vocabulary V of q elements, v1, . . . , vq and an embedding f of size
q (real or complex) we’ll colloquially talk about applying the embedding to V by sending vi

to f(i − 1).

Note that every complex encoding into d
2 dimensions induces a real encoding into d dimen-

sions, with the natural mapping of a complex number into its real and imaginary parts,
and vice versa. We’ll usually prefer the standard mapping z → (<(z), =(z)) where the real
part comes first, except when we’ll deal with the OG positional encoding, where having
the imaginary part before the real part will make more sense. For a complex encoding
g : Zq → Cd we’ll use the notation gR : Zq → R2d to denote its induced natural real
counterpart. In code, we’ll represent encodings as 2-dimensional arrays of shape (q, d)
with the appropriate (real or complex) types.

We’re now ready for the main definition of this section:

Definition 7.3 (Rotation Encoding). Let θ = (θ1, . . . , θn) ∈ [0, 2π)n be a vector of n angles.
Define the complex rotation encoding REθ : Zq → Cn as the complex encoding such that
REθ(a) = (eiaθ1 , . . . , eiaθn). Given a complex rotation encoding REθ, the induced rotation
encoding is the induced real rotation encoding RER

θ .

Note that, like many of the terms in this booklet “rotation encoding” is not part of the
standard terminology (don’t confuse it with the similarly named Rotary Position Embedding
[Su et al., 2022]!).



80 Rotation Encoding

1 def rotation_encoding(q, thetas):
2 return np.exp(np.arange(q)[:, None] * 1j * thetas[None, :]).view(dtype=np.float_)
3

4 def reversed_rotation_encoding(q, thetas):
5 vs = np.exp(np.arange(q)[:, None] * 1j * thetas[None, :])
6 res = np.empty((q, thetas.shape[0] * 2))
7 res[:, 0::2] = vs.imag
8 res[:, 1::2] = vs.real
9 return res

Figure 7.3: An implementation of rotation encoding and reverse rotation encoding in Numpy.

See Figure 7.3 for an implementation generating the induced real rotation encoding given
an angles vector thetas. It also includes a slightly lengthier implementation of reversed
rotation encoding - which are the induced real encoding in case you put the imaginary part
before the real part. Note that all of the discussion in this chapter holds for both types of
embeddings and we’ll usually just say rotation embedding when we refer to both.

An equivalent view of a rotation encoding is to take a vector whose coordinates are n

complex units v = (eiθ1 , . . . , eiθn) ∈ Cn, and define REv(a) = va, where the exponentiation
is done element-wise.

For example, for any complex rotation encoding REv, we have REv(1) = v and REv(0) =
(1, . . . , 1) ∈ Cn (and for the induced real rotation encoding, RER

v (0) = (1, 0, . . . , 1, 0) ∈ R2n).
Since the elements of a complex rotation encoding are complex units, we get the following:

Theorem 7.1 (Norm of Rotation Encoding). For any a ∈ Zq and complex rotation encoding
RE : Zq → Cd, we have |RE(a)|2 = d. For any a ∈ Zq and induced real rotation encoding
RER : Zq → Rd, we have |RER(a)|2 = d

2 .

In Section 3.2 we defined linearly shiftable encodings. We can easily extend the definition to
complex encodings.

Definition 7.4 (Linearly Shiftable Complex Encodings). A complex encoding f : Zq → Cd

is linearly shiftable if for every δ ∈ Z there exists a linear transformation over C,
Tδ : Cd → Cd, such that for all j ∈ Zq and 0 ≤ j + δ < q we have Tδf(j) = f(j + δ). We’ll
call Tδ the shifting transformation of f by δ.

It immediately follows that:

Lemma 7.1. If a complex encoding is linearly shiftable then its corresponding real encoding
is linearly shiftable.



Back to the OG Encoding 81

Proof. Exercise 2.

What’s so special about rotation encodings? Well, first, note the following useful property:

Theorem 7.2 (Rotation Encodings are Linearly Shiftable). Let REθ : Zq → Cd be a
complex rotation encoding. Then REθ is linearly shiftable.

Proof. Given δ ∈ Z, let Tδ be the linear transformation defined by the diagonal matrix

Mδ =


eiδθ1

. . .
eiδθd

. Then Tδ linearly shifts REθ by δ.

From Theorem 7.2 and Lemma 7.1, real encodings induced by rotation encodings are also
linearly shiftable. See Figure 7.4 for an implementation of the shifting construction for the
induced real rotation encoding from Theorem 7.2 and Lemma 7.1.

1 def shift_by_delta(d, delta, theta):
2 M = np.zeros((d, d))
3 for i in range(d // 2):
4 M[i * 2, i * 2] = np.cos(theta[i] * delta)
5 M[i * 2 + 1, i * 2] = -np.sin(theta[i] * delta)
6 M[i * 2, i * 2 + 1] = np.sin(theta[i] * delta)
7 M[i * 2 + 1, i * 2 + 1] = np.cos(theta[i] * delta)
8 return M

Figure 7.4: An implementation creating the shifting matrix for δ = delta for the induced
real encoding in dimension d from a rotation encoding with angles theta in Numpy.

From now on we’ll only deal with real encodings.

7.2 Back to the OG Encoding

Ok - so now for the real reason we care about rotation encodings:

Theorem 7.3 (OG Encodings are Reversed Rotation Encodings). The positional encoding
suggested in the original Transformer paper (the OG encodings) in dimension 2d is the
induced reversed real rotation encoding from a complex rotation encoding with angles
θOG = ( 1

10,000
0
d

, 1
10,000

1
d

, . . . , 1
10,000

d−1
d

).



82 Back to the OG Encoding

Proof. Exercise 4. Note that in the original Transformer paper, the authors map a complex
number c to (=(c), <(c)), i.e. the order of the real and imaginary parts are reversed.

We can verify:

1 og_angles = lambda d: 1 / (10_000 ** (2 * np.arange(d // 2) / d))
2

3 q = 64
4 d = 128
5 np.testing.assert_allclose(reversed_rotation_encoding(q, og_angles(d)), og_embedding(q, d))

Figure 7.5: The OG encodings are reversed rotation encodings.

Putting the above together, we immediately get the following fact stated in the Transformer
paper:

Corollary 7.1. The OG encoding is linearly shiftable.

Great, so we just proved the claim from the original Transformer paper [Vaswani et al., 2017]
that the OG embeddings are linearly shiftable†. In fact, we’ve shown something more general.

Alright, so why then, did we not use the OG encoding then?

One reason, is that the OG encoding needs a minimum of 4 dimensions (as the number of
dimensions must be even, and we already know that 2 dimensions are not enough, Section
2.3).

A second reason is that some constructions (e.g. Hello World) are much easier with our
pseudo “learned” embeddings.

But the most important reason is different. The OG embeddings are not fixed under layer
normalization. Worse, once layer normalization is applied, the OG embedding are no longer
linearly shiftable (Exercise 5). Wait, so how did they work for attending to relative positions
in the original Transformer paper?

The reason they worked in the original Transformer paper, is that there, the authors used
PostLN - so the attention module saw the original non-normalized (and therefore still linearly
shiftable) embeddings. Note that according to Theorem 7.1, the length of all OG embeddings
of dimension d is constant (d

2 ) so if we used RMSNorm [Zhang and Sennrich, 2019] for

† Note that the term “linear shiftability” is not standard, and they don’t use it - I made it up for this
book.



Back to the OG Encoding 83

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.6: The OG angles for dmodel = 1, 024, i.e. 512 angles (Left). The first 10 positions,
depicted as complex numbers (Right).

example, all embedding vectors would be scaled by a constant factor (Exercise 6). What
would that mean about attending to relative positions with the OG embeddings and PostLN,
but using RMSNorm instead of LayerNorm? (See Exercise 6).

Rotation encodings, taking basically a single line of code to implement (see Figure 7.3), seem
natural and nice. One thing still seems very arbitrary though about the OG embeddings -
the angles!

Figure 7.6 shows the OG angles visually. What do you think about it? We’ll revisit this
figure soon.

What could we use instead of the OG angles? We could for example just sample the angles
uniformly at random from [0, 2π]. Let’s call such rotation embeddings random rotation
encodings.

Definition 7.5 (Random Rotation Encoding). A random rotation encoding of dimension
d ∈ Z+ is a rotation encoding where the angles are sampled independently uniformly at
random from [0, 2π], i.e. θ = (θ1, . . . , θ d

2
) amd θi ∼ U(0, 2π).

Figure 7.7 shows an implementation, and Figure 7.8 shows the actual embeddings for 64
positions and 128 dimensions.

Note that from Theorem 7.2 we get that the random rotation encoding are linearly shiftable
as well.



84 Back to the OG Encoding

1 def random_rotation_embedding(q, d):
2 return rotation_encoding(q, thetas=np.random.uniform(0, 2 * np.pi, size=d // 2))

Figure 7.7: Random rotation embeddings.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

Figure 7.8: Random rotation embedding for 64 positions and 128 dimensions (i.e. 64 angles).



Back to the OG Encoding 85

What about using evenly spaced angles instead of random ones? Wouldn’t that be even
better? In Exercise 8 you’ll show that would be a bad idea.

So is there any reason to prefer one set of angles over other? We’ll answer this question in
the next two sections.

7.2.1 Distinguishability

We’ll now turn our attention to a new property of encodings - distinguishability, which
will allow us to attend and read information with a low amount of noise, complementing
attention hardening (Section 3.1).

Definition 7.6 (Distinguishability). The distinguishability D of an encoding f : Zq → Rd

satisfies D = min(diag(softmax(F ))), where Fi,j = f(i) ·f(j) and diag returns the elements
on the diagonal of a matrix.

Take a position encoding f : Zq → Rd with distinguishability D. Now consider trying
to read a value from a specific previous position, without attention hardening (Section
3.1). Distinguishability provides some way to measure the amount of noise that we’ll get.
Specifically, if both our query and key are exactly equal to the encoding of the minimum
element on the softmax matrix diagonal from Definition 7.6 (i.e. without the large factor of
attention hardening), the value that we’ll end up getting will be D · vcorrect × (1 − D)vnoise.
Can we artificially increase distinguishability just by scaling the position embedding? Yes
with PostLN, but not with PreLN. By applying attention hardening like we have throughout
this book we can emulate an increased distinguishability, but note that that requires
extremely high weights. So high distinguishability could be desired in order to harden
attention without using large factors from the attention hardening trick we developed in
Section 3.1.

Note that while we presented high distinguishability as a desired trait, it might sometimes be
helpful to have low distinguishability between related elements. For example, for fuzzy tasks
like understanding language, when trying to read a position k places back, some “noise”
from its neighboring positions might be helpful.

For now, consider Figure 7.9 which compares the distinguishability of the OG encoding and
a random rotation encoding for 256 elements, with a varying number of dimensions. We see
that the random encoding has much higher distinguishability (> 0.99 starting at around 10
dimensions) whereas OG encoding only has distinguishabilty of 0.94 with 256 dimensions.

Indeed, note that since many of the angles θi from the OG encodings are small (close to 0),
the resulting encoding results in a very soft attention (low distinguishability). For example,



86 Back to the OG Encoding

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Random rotation encoding
OG encoding

Figure 7.9: A comparison of the distinguishability of the OG encoding and a random
encoding for 256 positions as a function of the number of dimensions.

define:

M =


v1
...

vn


Then with just 64 positions and dmodel = 128 (double than needed even for sparse encoding),
we have softmax(MMT )ii ≈ 0.77 � 1.

And as we saw, we could substantially increase the hardness of the attention if we replaced
the OG angles θi above with e.g. ones selected at random θ̂i ∼ U(0, 2π). That said, with the
attention hardening trick (see 3.1) the original encoding and angles will suffice. Specifically,
with the original angles and attention hardening, a block size of 256, and 2 dimensions of
original position embedding (and without layer normalization), we can get the equivalent
of hard positional attention for all practical purposes, with a large enough N value of say
1,000,000.

The distinguishability of a random embedding is much higher than that of the OG embedding.
For now 1-0 for the random embedding. Do the OG embedding have anything useful going
on for them?



Back to the OG Encoding 87

0 20 40 60 80 100 120

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

10

20

30

40

50

60

Figure 7.10: The OG embedding (Left) and a random rotation embedding (Right) for 64
positions and 128 dimensions.

7.2.2 Free Space

For easier reference, Figure 7.10 compares the OG embeddings and a random rotation
embeddings side by side. Note that the right side (higher dimensions) of the OG embeddings
seems almost independent of the encoded position - a useful property allowing for “free space”
for processing. In constrast, the random encoding in the right side of Figure 7.10 seems to
have very few columns that seem (almost) independent of the encoded element. Could this
be a redeeming quality of the OG embedding?

Let’s make more formal the intuition that the OG encoding has a bunch of “free space”
whereas a random rotation encoding does not.

Definition 7.7 (Padding Dimension). An encoding f : Zq → Rd has padding of dimension
at least k with ε noise if there is a subspace K ⊆ Rd of dimension k and a vector v ∈ Rk

such that for all a ∈ Zq we have |f(a)K − v| ≤ ε where f(a)K denotes the projection of f(a)
onto K. If K is parallel to the standard axes, we’ll say that the padding is standard. If
v = 0 we’ll say that the padding is simple. If an encoding has padding of dimension at
least k but not padding of dimension at least k + 1 we’ll say that the encoding has padding
dimension k. If an encoding has a standard padding of dimension at least k but not a
standard padding of dimension at least k + 1 we’ll say that the encoding has standard
padding dimension k.

With this definition, we immediately get the following lemma:

Lemma 7.2. The standard padding dimension with noise ε of an encoding f : Zq → Rd

equals |{0 ≤ i < d | max(f(Zq)i) − min(f(Zq)i) ≤ 2ε}|.

Using Lemma 7.2 we can calculate the standard padding dimension of the encodings we’ve
encountered thus far. For example, with ε = 1e−3 and encoding Z64 into R128, the OG
encodings have a standard padding dimension of 16, while a random rotation encoding only



88 Non Linearly Shiftable Encodings �

1 def standard_padding_dimension(encoding, epsilon=1e-3):
2 return np.sum(np.max(encoding, axis=0) - np.min(encoding, axis=0) <= 2 * epsilon)

Figure 7.11: Calculating the standard padding dimension of an encoding.

has a standard padding dimension of 0 (this can be verified empirically using the code from
Figure 7.11).

Having a higher padding dimension means that we can write computation results or copy
information from previous tokens without noise and without cleaning up (Section 3.4). Even
more importantly, note that the first thing that the Transformer does is sum the position
embeddings and the (learned) token embeddings - having a high padding dimension might
make it easier to learn token embeddings in a way that is independent of the position.
Throughout this book we’ve seen that cleanup was almost always free or at least very cheap.
In real life situations though, where the attention heads often have much less dimensions
than the model, cleaning up could be a more costly operation. So a high padding dimension
could turn out useful (see Exercise 11).

7.3 Non Linearly Shiftable Encodings �

Linear shiftability is a critical quality for enabling attending to relative positions (see Section
3.2). In this very optional section we will consider some more encodings which are not
lineraly shiftable. As such, they might not be very helpful as positional encodings, but could
be helpful to better understand how to embed tokens.

Definition 7.8 (Random Normal Encoding). Random normal encodings are encodings
f : Zq → Rd such that for each i ∈ Zq, f(i)k ∼ N(0, 1) and the coordinates are i.i.d.

Note that we already used random normal encodings, e.g. in the construction of the untied
Transformer in Chapter 3 (Figure 3.3).

Definition 7.9 (Random Sign Encoding). Random sign encodings are encodings f : Zq →
{−1, 1}d such that for each i ∈ Zq and 0 ≤ k < d we have P (f(i)k = 1) = 1

2 and the
coordinates are i.i.d.

Figure 7.3 shows an implementation of random normal encoding and random sign encoding.

Finally we’ll present Hamming code encoding:

Definition 7.10 (Hamming Code Encoding). Hamming code (n, r) encoding are encoding



Exercises 89

1 def random_normal_encoding(q, d):
2 return np.random.normal(0, 1, (q, d))
3

4 def random_sign_encoding(q, d):
5 return np.random.randint(0, 2, (q, d)) * 2 - 1

Figure 7.12: An implementation of random normal encoding and random sign encoding in
Numpy.

functions f : Zq → {−1, 1}d such that for each i ∈ Zq and 0 ≤ k < d we have f(i)k = 1 iff.
Hamming(n, r)i,k = 1.

Hamming encodings provide a guarantee for a certain level of distinguishability. Unfor-
tunately, unlike random normal encodings or random sign encodings, they are highly
unbalanced (i.e. their mean is far from 0). So also consider the (almost) balanced version,
where the number of positive elements (+1s) is off by no more than 1 from the number of
negative elements (-1s). Figure 7.14 show an implementation of Hamming encoding.

Non-linearly-shiftable encodings are less useful as positional encodings, as they don’t easily
support attending to relative positions, but they do support some beneficial properties
making them potentially suitable to represent tokens.

7.4 Exercises

1.‘…’ Consider the OG embeddings - can you see the motivations of the authors of the
Transformer paper to have defined them as they did?

2.P Prove Lemma 7.1.
3.P� Show that the OG embeddings are linearly shiftable.
4.P Prove Theorem 7.3.
5.P Show that the OG embeddings after layer normalization are not linearly shiftable.
6. What happens to the OG embeddings when applying RMSNorm [Zhang and Sennrich, 2019]?

Can we easily use the OG embeddings to attend to relative positions with a PreLN
Transformer if we use RMSNorm instead of LayerNorm?

7.� Generalize the shift_by_delta function from Figure 7.4 to create a matrix that attends
equally uniformly to k past position. I.e. if the keys are positional rotation encodings
for positions 1, . . . , i, and the query is a position rotation encoding for position i, the
attention weights should be 0 for positions j ≤ i − k and 1

k for any position i − k < j ≤ i.



90 Exercises

0 5 10

0

10

20

30

40

50

60

0 5 10

0

10

20

30

40

50

60

0 5 10

0

10

20

30

40

50

60

0 5 10

0

10

20

30

40

50

60

Figure 7.13: Examples of non linearly shiftable encodings: random normal encodings
(left), random sign encoding (second from left) and Hamming encoding(15, 4) (second from
right), and almost balanced Hamming encoding(15, 4) (right). All with 64 elements and 15
dimensions.

1 import itertools
2

3 all_bit_strings = lambda n: list(itertools.product([0, 1], repeat=n))
4

5 def hamming_embedding(r):
6 n = 2 ** r - 1
7 k = n - r
8 bits = [x for x in all_bit_strings(r) if x != (0,) * r]
9 bits = sorted(reversed(bits), key=lambda s: s.count(1)) # Put in standard form.

10 H = np.array(bits).T
11 A = H[:, r:]
12 G = np.concatenate((np.eye(k), A.T), axis=1)
13 bits = np.array(all_bit_strings(k))
14 return (np.einsum('kn,vk->vn', G, bits) % 2) * 2 - 1.

Figure 7.14: An implementation of Hamming encoding.



Exercises 91

We’d like:

attention_weight(i, j) =

 1
k i − k < j ≤ i

0 j ≤ i − k

Note that simply summing the matrices returned by shift_by_delta will not work.
8. What would be the distinguishability of a rotation encoding where the angles are evenly

spaced, like in uniform_rotation_embedding below?

def uniform_rotation_embedding(q, d):
return rotation_encoding(q, np.linspace(0, 2 * np.pi, d // 2, endpoint=False))

9.P Here’s a plot of four rotation embeddings: The OG embedding, a random rotation
embedding, a random rotation embedding where the angles are sorted, and of uniform
rotation embedding, all with 64 positions and 128 dimensions. Which is which? Explain
the visual patterns.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

10

20

30

40

50

60

10.q Write a function to calculate the padding dimension of an embedding (as opposed to
calculating the standard padding dimension in Figure 7.11).

11. Train a Transformer (with PostLN) on your favorite dataset, once with the OG embedding
and once with random rotation embedding. Which one works best?



92 Exercises



Chapter 8

The TAOTP Interpreter �

To learn something, to master
something, anything, is as sweet as first
love.

GEOFFREY WOLFF

There is no great genius without some
touch of madness.

ARISTOTLE

An expert is a man who has made all
the mistakes which can be made, in a
narrow field.

NIELS BOHR

Throughout this book, we set the weights for our Transformer programs via small
Python programs - for example, see Figure 2.9. In this (truly skippable chapter) we

will take things to the next mastery level and set the numerical weights directly manually.

93



94 Exercises

1 import ast
2

3 def compile_TAOTP(program: str):
4 params = ast.literal_eval(program)
5 if 'out_emb' not in params:
6 params['out_emb'] = params['tok_emb']
7 for emb in ['tok_emb', 'pos_emb', 'out_emb']:
8 params[emb] = np.array(params[emb])
9 for layer in params['layers']:

10 for k, lst in layer.items():
11 layer[k] = np.array(lst)
12 return params

Figure 8.1: A simple interpreter for the TAOTP language.

Also, we mentioned that manually setting the weights of a Transformer could be seen as an
esoteric programming language, so it would be nice to have an interpreter for that language
(that can’t just run any Python program!). You can find a simple implementation of such
an interpreter for this language in Figure 8.1.

For example, Figure 8.2 shows the solution for Hello World for this interpreter.

8.1 Exercises

1.q‘…’ Program anything (literally anything meaningful will do!) manually directly in the
language of TAOTP, i.e. without writing Python - write numerical weights by hand
directly.

2.‘…’ Make a small change to the TAOTP program from Figure 8.2. Try to predict what will
happen. Were you right?

3.q Reverse engineer the TAOTP program from Figure 8.3 - what does it do in general?
Try to do it without running it!

4.‘…’ Improve the compile_TAOTP function from Figure 8.1 to allow more compact inputs.
For example, use default values for the layer normalization layers, allow omitting empty
layers arrays, allow specifying a block_size value and automatically initialize pos_emb
appropriately, etc.



Exercises 95

1 {
2 "tok_emb": [
3 [1.2, -1.2, 0.0],
4 [1.4, -0.6, -0.7],
5 [1.1, 0.1, -1.2],
6 [0.5, 0.8, -1.3],
7 [-0.2, 1.3, -1.0],
8 [-0.9, 1.3, -0.3],
9 [-1.3, 0.9, 0.3],

10 [-1.3, 0.2, 1.0],
11 [-0.8, -0.5, 1.3],
12 [-0.1, -1.1, 1.2],
13 [0.6, -1.4, 0.7],
14 ],
15 "pos_emb": [
16 [1412611.7, -648030.1, -764581.5],
17 [-874208.8, -525610.0, 1399818.9],
18 [1224744.8, -1224744.8, 0.0],
19 [1224744.8, -1224744.8, 0.0],
20 [-1336432.9, 267641.6, 1068791.2],
21 [1151984.3, 134429.5, -1286413.9],
22 [-267641.6, 1336432.9, -1068791.2],
23 [-1336432.9, 267641.6, 1068791.2],
24 [525610.0, 874208.8, -1399818.9],
25 [1224744.8, -1224744.8, 0.0],
26 [-1374349.0, 975919.0, 398430.0],
27 [-975919.0, 1374349.0, -398430.0],
28 [648030.1, -1412611.7, 764581.5],
29 ],
30 "layers": [],
31 "lnf": {"gamma": 1.0, "beta": 0.0},
32 }

Figure 8.2: Our solution for Hello World in the format of the TAOTP interpreter.



96 Exercises

1 {
2 "tok_emb": [
3 [1.3, -1.1, -0.2],
4 [1.3, -0.9, -0.4],
5 [1.4, -0.7, -0.6],
6 [1.4, -0.6, -0.7],
7 [1.3, -0.4, -0.9],
8 [1.3, -0.2, -1.1],
9 [1.2, 0, -1.2],

10 [1.1, 0.2, -1.3],
11 [0.9, 0.4, -1.3],
12 [0.7, 0.6, -1.4],
13 [0.6, 0.7, -1.4],
14 [0.4, 0.9, -1.3],
15 [0.2, 1.1, -1.3],
16 [0, 1.2, -1.2],
17 [-0.2, 1.3, -1.1],
18 [-0.4, 1.3, -0.9],
19 [-0.6, 1.4, -0.7],
20 [-0.7, 1.4, -0.6],
21 [-0.9, 1.3, -0.4],
22 [-1.1, 1.3, -0.2],
23 ],
24 "pos_emb": [
25 [0., 0., 0.],
26 [0., 0., 0.],
27 [0., 0., 0.],
28 [0., 0., 0.],
29 [0., 0., 0.],
30 [0., 0., 0.],
31 [0., 0., 0.],
32 [0., 0., 0.],
33 ],
34 "layers": [
35 {
36 "Q": [[[70710678.1, 0., 0.], [70710678.1, 0., 0.], [-141421356.2, 0., 0.]]],
37 "K": [[[1.2, 0., 0.], [-1.2, 0., 0.], [-0., 0., 0.]]],
38 "V": [[[1.0, 0., 0.], [0., 1.0, 0.], [0., 0., 1.0]]],
39 "P": [[[1000000., 0., 0.], [0., 1000000., 0.], [0., 0., 1000000.]]],
40 "M1": [[], [], []],
41 "b1": [],
42 "M2": [],
43 "b2": [0., 0., 0.],
44 "ln1": {"gamma": 1., "beta": 0.},
45 "ln2": {"gamma": 1., "beta": 0.},
46 }
47 ],
48 "lnf": {"gamma": 1., "beta": 0.},
49 }

Figure 8.3: Code for Exercise 3.



Index

all_bit_strings, 90

base_layer, 6
base_params, 6
build_decimal_addition_transformer, 71
build_lookup_transformer, 37
build_min_transformer, 54
build_MLP, 65
build_multi_digit_mod_transformer, 69
build_search_transformer, 48
build_single_digit_mod_transformer, 67
build_sort_transformer, 57
build_untied_transformer, 33

compile_TAOTP, 94
count_non0_params, 7
count_params, 7

decode, 5
decode_simpleformer, 14
detokenize, 15
detokenizer, 15

hamming_embedding, 90
HumanReadableDict, 7

layer_norm, 5
logsumexp, 36
loss_and_grad, 36

message, 15

nextpoint, 56
norm, 5

og_angles, 82
og_embedding, 78
onehot, 37
optimize, 37

padding_block, 45
pos_3d_enc_rotation_matrix, 28
pos_enc_3d, 21
pos_enc_3d_array, 21
powerpoints, 56

random_normal_encoding, 89
random_rotation_embedding, 84
random_sign_encoding, 89
reversed_rotation_encoding, 80
rotation_encoding, 80

scramble_transformer, 8
self_attn, 5
self_attn2, 8
shift_by_delta, 81
simpleformer, 14
softmax, 5
standard_padding_dimension, 88
stretch, 56

tokenize, 15

97



98 INDEX

tokenizer, 15
transformer, 5
transformer_layer, 5

uniform_rotation_embedding, 91



Bibliography

[Alammar, 2018] Alammar, J. (2018). The illustrated transformer.

[Baum, 1988] Baum, E. B. (1988). On the capabilities of multilayer perceptrons. Journal
of Complexity, 4(3):193–215.

[Bubeck et al., 2020] Bubeck, S., Eldan, R., Lee, Y. T., and Mikulincer, D. (2020). Network
size and weights size for memorization with two-layers neural networks.

[Knuth, 1997a] Knuth, D. E. (1997a). The Art of Computer Programming, Vol. 1: Funda-
mental Algorithms. Addison-Wesley, Reading, Mass., third edition.

[Knuth, 1997b] Knuth, D. E. (1997b). The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Boston, third edition.

[Knuth, 1998] Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: (2nd
Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., USA.

[Press and Wolf, 2017] Press, O. and Wolf, L. (2017). Using the output embedding to
improve language models.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018).
Improving language understanding by generative pre-training.

[Su et al., 2022] Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. (2022).
Roformer: Enhanced transformer with rotary position embedding.

[Turner, 2023] Turner, R. E. (2023). An introduction to transformers.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

99



100 BIBLIOGRAPHY

[Xiong et al., 2020] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H.,
Lan, Y., Wang, L., and Liu, T.-Y. (2020). On layer normalization in the transformer
architecture.

[Zhang and Sennrich, 2019] Zhang, B. and Sennrich, R. (2019). Root mean square layer
normalization.


	I Preliminaries
	The Transformer
	Implementation
	Inputs and Outputs

	Transformer Programming
	Efficiency
	Exercises


	II Transformer Programs
	Hello World
	A Simplified Implementation 18
	The Full Construction
	3D Positional Encoding
	Putting It All Together
	Exercises

	Lookup Table
	Attention Hardening
	Attending to Relative Positions
	Bypassing Layer Normalization
	Cleaning Up
	Simplified Construction for an Untied Transformer
	Analysis 18

	Full Construction 18
	Evaluation
	Some Silliness

	Exercises

	Search
	Padding for Layer Normalization
	Full Construction
	Improving Efficiency

	Evaluation
	Exercises

	Sort
	Min and Max
	Back to Sort
	Powerpoints
	The Construction

	Exercises

	Decimal Addition
	Attention Is Not All You Need
	Analog Addition
	Universal Approximation With the MLP
	Back to Single Digit Addition
	MLP Cleanup
	Full Construction for Single Digits Modular Addition
	Multi-Digit Modular Addition
	Full Construction
	Exercises


	III Further Topics
	The OG Encodings
	Rotation Encoding
	Back to the OG Encoding
	Distinguishability
	Free Space

	Non Linearly Shiftable Encodings 18
	Exercises

	The TAOTP Interpreter 18
	Exercises



